The N6-methyadenosine (m6A) levels in HaCaT-T cells and control HaCaT cells
Ontology highlight
ABSTRACT: Human m6A-mRNA&lncRNA Epitranscriptomic Microarray of arsenite-transformed human keratinocytes (HaCaT-T cells, 1 μM arsenite exposure for 50 passages) compared to its control HaCaT cells (passed for 50 passages without arsenic exposure).
Project description:The purpose of this study is to search for aberrant genes in HaCaT keratinocytes after chronic exposure to arsenic trioxide. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. HaCaT cells were chronically exposed to 0.5µg/mL arsenic trioxide (As2O3) up to 22 passages and RNA was extracted. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide
Project description:The purpose of this study is to search for aberrant genes in HaCaT keratinocytes after chronic exposure to arsenic trioxide. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. HaCaT cells were chronically exposed to 0.5M-BM-5g/mL arsenic trioxide (As2O3) up to 22 passages and RNA was extracted. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide Two experimental groups: 1. The treatment group was sub-cultured up to passage 22 to establish a chronic exposure state. 2. The passage control group was also sub-cultured up to 22 passages but with no exposure to arsenic trioxide. 4 technical replicates with 3 replicates making a total of 8X3 =24 samples HaCat Cell untreated (passage control): 1. H1_H001, H1_H002, H1_H003 2. H2_ H004, H2_H005, H2_H006 3. H3_ H007, H3_H008, H3_H009 4. H4_ H010, H4_H011, H4_H012 HaCat Cell treated with 0.5M-BM-5g/ml of arsenic trioxide: 5. A1_H013, A1_H014, A1_H015 6. A2_H016, A2_H017, A2_H018 7. A3_H019, A3_H020, A3_H021 8. A4_H022, A4_H023, A4_H024 Cell Type: Human Skin Keratinocyte: 1.5 M-CM-^W105 HaCaT cells were cultured in 7.5 ml of complete DMEM containing 10% Fetal Bovine Serum (FBS) and 1% penicillin, streptomycin in T-25 culture plate. Cells were incubated in a humidified atmosphere with 5% CO2 at 37 M-BM-:C. The treatment groups were exposed to 0.5M-BM-5g/mL As2O3 (equivalent to LC 0.5), and passaged at 90% confluent. Total RNA was extracted from 4 technical replicates of unexposed HaCaT cells and HaCaT cells chronically exposed to arsenic trioxide up to passage 22 using RNA STAT-60 (TEL-TEST, INC, Friendswood, TX, USA).
Project description:Marine ingredients can contain relatively high levels of arsenic. The main aim of this study is to assess the hepatic toxicity of arsenic species in Atlantic salmon (Salmo salar) in vitro. Primary hepatocytes were isolated from six male Atlantic salmon and exposed for 48 h to establish dose-response curves for arsenite (AsIII) (0.1-3 μM) and for arsenosugar (AsSug) (5-250 μM). Regarding arsenite, results obtained indicated that the dose between 0.1 and 1 represented a marked threshold for effect. Very few genes were differentially expressed (N=5, p-adjust < 0.1) following AsIII 0.1 µM treatment compared to AsIII 1µM (N=2338 p-adjust < 0.01). Similar was observed for AsSug exposure where exposure to 50 µM resulted in 195 DEGs (p-adjust < 0.1) vs 6899 (p-adjust < 0.01) following AsSug 250µM exposure
Project description:Marine ingredients can contain relatively high levels of arsenic. The main aim of this study is to assess the hepatic toxicity of arsenic species in Atlantic salmon (Salmo salar) in vitro. Primary hepatocytes were isolated from six male Atlantic salmon and exposed for 48 h to establish dose-response curves for arsenite (AsIII) (0.1-3 μM) and for arsenosugar (AsSug) (5-250 μM). Regarding arsenite, results obtained indicated that the dose between 0.1 and 1 represented a marked threshold for effect. Very few genes were differentially expressed (N=5, p-adjust < 0.1) following AsIII 0.1 µM treatment compared to AsIII 1µM (N=2338 p-adjust < 0.01). Similar was observed for AsSug exposure where exposure to 50 µM resulted in 195 DEGs (p-adjust < 0.1) vs 6899 (p-adjust < 0.01) following AsSug 250µM exposure
Project description:Determining the miRNA and mRNA expression profiles in HaCaT cells at early and late stages of arsenite exposure to reveal early and late changes in the HaCaT cells transformation process.
Project description:Determining the miRNA and mRNA expression profiles in HaCaT cells at early and late stages of arsenite exposure to reveal early and late changes in the HaCaT cells transformation process.
Project description:Determining the miRNA and mRNA expression profiles in HaCaT cells at early and late stages of arsenite exposure to reveal early and late changes in the HaCaT cells transformation process.
Project description:Determining the miRNA and mRNA expression profiles in HaCaT cells at early and late stages of arsenite exposure to reveal early and late changes in the HaCaT cells transformation process.
Project description:Chronic exposure to arsenic is associated with dermatological and non-dermatological disorders. Consumption of arsenic contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs and gastrointestinal tract. Although, arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues such as skin. Epidemiological studies on arsenic suggest the association of skin cancer upon arsenic exposure, however, the exact mechanism of arsenic induced carcinogenesis is not completely understood. We have developed a cell line-based model to understand the molecular mechanisms involved in arsenic mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT was exposed to 100nM sodium arsenite for six months. We observed an increase in the basal ROS levels in arsenic exposed cells along with the increase in anti-apoptotic proteins. SILAC-based quantitative proteomics approach resulted in the identification and quantitation of 2,181 proteins of which 39 proteins were found to be overexpressed (≥2-fold) and 56 downregulated (≤2-fold) upon chronic arsenic exposure. Our study provides comprehensive insights into the molecular basis of chronic arsenic exposure on skin.
Project description:Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes due to arsenic exposure and withdrawal. In these studies, we seek to understand the molecular mechanisms behind the biological changes induced by chronic low doses of arsenic exposure. We used a comprehensive approach involving chromatin structural studies and mRNA microarray analyses to determine how chromatin structure and gene expression patterns change in response to chronic low dose arsenic exposure and its subsequent withdrawal. Our results show that cells exposed to low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression and miRNA changes that are consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic was withdrawn. However, some of the gene expression patterns remained altered, plausibly as a result of an adaptive response by these cells. Additionally, these gene expression patterns correlated with changes in chromatin structure, further solidifying the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the transcription initiation as well as at the splicing level. Thus our results suggest that general patterns of alternative splicing, as well as expression of particular gene regulators, can be indicative of arsenite-induced cell transformation. A total of eight (8) samples with two biological replicates under four separate conditions: wild-type treated with deionized H2O for 36 days (NT); chronic low-dose arsenic exposure of 1 uM of sodium arsenite (iAs-T) for 36 days; chronic arsenic exposure of 1 uM of sodium arsenite for 26 days followed by removal of sodium arsenite for 10 days, measured at day 36 (iAs-Rev); and chronic arsenic exposure of 1 uM of sodium arsenite for 26 days, followed by removal of sodium arsenite exposure for 10 days, followed by 1 uM of chronic sodium arsenite exposure for 10 days (measured at day 46) (iAs-Rev-T).