Project description:This program aimed to understand gene expression changes in aorta during atherosclerotic lesion progression with an objective to identify genes that may present new opportunities for drug intervention The HFD-fed ApoE KO mice aorta profiling data was analyzed by identifying genes that were up- and down-regulated at selected p value and fold change in comparison to the HFD-fed WT C57BL6 controls.
Project description:Identification of novel pathways in the development of atherosclerosis. Here, we are looking at changes in gene expression that occur in the aorta with the development of atherosclerosis
Project description:BackgroundImeglimin is a new anti-diabetic drug which promotes insulin secretion from pancreatic β-cells and reduces insulin resistance in insulin target tissues. However, there have been no reports examining the possible anti-atherosclerotic effects of imeglimin. In this study, we investigated the possible anti-atherosclerotic effects of imeglimin using atherosclerosis model ApoE KO mice treated with streptozotocin (STZ).MethodsApoE KO mice were divided into three groups: the first group was a normoglycemic group without injecting STZ (non-DM group, n = 10). In the second group, mice were injected with STZ and treated with 0.5% carboxymethyl cellulose (CMC) (control group, n = 12). In the third group, mice were injected with STZ and treated with imeglimin (200 mg/kg, twice daily oral gavage, n = 12). We observed the mice in the three groups from 10 to 18 weeks of age. Plaque formation in aortic arch and expression levels of various vascular factors in abdominal aorta were evaluated for each group.ResultsImeglimin showed favorable effects on the development of plaque formation in the aortic arch in STZ-induced hyperglycemic ApoE KO mice which was independent of glycemic and lipid control. Migration and proliferation of vascular smooth muscle cells and infiltration of macrophage were observed in atherosclerotic lesions in STZ-induced hyperglycemic ApoE KO mice, however, which were markedly reduced by imeglimin treatment. In addition, imeglimin reduced oxidative stress, inflammation and inflammasome in hyperglycemic ApoE KO mice. Expression levels of macrophage makers were also significantly reduced by imeglimin treatment.ConclusionsImeglimin exerts favorable effects on the development of plaque formation and progression of atherosclerosis.
Project description:Aortic macrophages and endothelial cells of apoE KO mice were sorted and analyzed by microarray 2 weeks after regression was induced by adenoviral transfer of apoE. Aortic macrophages (CD45+ F4/80+ CD11b+) and endothelial cells (CD45- CD31+) were sorted from apoE KO mice and the RNA extracted and hybridized to Affymetrix Mouse Gene 1.0 ST array. We pooled aortas from 5 mice for each sort.
Project description:Aortic macrophages and endothelial cells of apoE KO mice were sorted and analyzed by microarray 2 weeks after regression was induced by adenoviral transfer of apoE.
Project description:Identification of novel pathways in the development of atherosclerosis. Here, we are looking at changes in gene expression that occur in the aorta with the development of atherosclerosis Analysis used RNA from thoracic aortas from chow fed ApoE knockout mice as control samples for comparison to the experimental samples from 8 week and 16 week ApoE knockout mice fed a western-type diet
Project description:This program aimed to understand gene expression changes in aorta during atherosclerotic lesion progression with an objective to identify genes that may present new opportunities for drug intervention
Project description:BackgroundSphingomyelin synthase 2 (SMS2) contributes to de novo sphingomyelin (SM) biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis.MethodsThe Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR) and protein level examination (SMS activity assay).ResultWe generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2) or GFP cDNA (AdV-GFP). On day six after intravenous infusion of 2 × 10(11) particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p < 0.001, respectively), compared to AdV-GFP treated mice. Moreover, plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and sphingomyelin (SM) levels were significantly increased by 39% (p < 0.05), 42% (p < 0.05), 68% (p < 0.001), and 45% (p < 0.05), respectively. Plasma high-density lipoprotein cholesterol (HDL-C), phosphatidylcholine (PC), and PC/SM ratio were decreased by 42% (p < 0.05), 18% (p < 0.05), and 45% (p < 0.05), respectively. On day 30, the atherosclerotic lesions on the aortic arch of AdV-SMS2 treated mice were increased, and the lesion areas on the whole aorta and in the aortic root were significantly increased (p < 0.001). Furthermore, the collagen content in the aorta root was significantly decreased (p < 0.01).ConclusionsOur results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.
Project description:The "iron hypothesis" of atherosclerosis has long been controversial. Several studies have shown that dietary iron restriction or low-iron diets can effectively alleviate atherosclerosis in rabbits and mice. However, the underlying molecular mechanisms of these phenomena remain to be elucidated. In this study, we further evaluated possible correlations between a low-iron diet and atherosclerosis alleviation by using a quantitative proteomic approach. For this purpose, apolipoprotein E knockout (ApoE KO) mice were divided into three groups and fed a normal diet (ND), a high-fat diet (HFD), or a high-fat +low-iron diet (HFD + LI). Our results showed that the HFD-LI improved atherosclerosis by decreasing en face lesions of the aorta and reducing the accumulation of macrophages and disordered smooth muscle cells. HFD-LI also decreased iron levels, serum hepcidin levels and the serum concentration of low-density lipoprotein cholesterol (LDL-C). The use of the isobaric tag for absolute quantification (iTRAQ) proteomic method and subsequent multi-technique molecular validation indicated that many of the proteins involved in atherosclerotic inflammation, vascular remodeling, and focal adhesion had significant changes in their expression among the diet groups. Importantly, the proteins Gal-3 and VCAM1, which are key participants of atherosclerosis pathogenesis, revealed lower expression after a low-iron diet. The present findings widely support the "iron hypothesis" of atherosclerosis. Further studies are suggested to fully understand the implications of these results.