Transcriptome profiling of human pluripotent stem cell-derived cerebellar organoids reveals faster commitment under dynamic conditions
Ontology highlight
ABSTRACT: Human induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented for the first time a reproducible and scalable production of cerebellar organoids by using the novel Vertical-Wheel single-use bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. The presence of factors that favors angiogenesis onset was detected in dynamic condition, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests and studying pathological pathways involved in cerebellar degeneration.
ORGANISM(S): Homo sapiens
PROVIDER: GSE161549 | GEO | 2021/04/26
REPOSITORIES: GEO
ACCESS DATA