Circular RNA expression profiles in the plasma of patients with infantile hemangioma determined using microarray analysis
Ontology highlight
ABSTRACT: This study compared the circRNA expression levels in plasma samples from patients with IH and control individuals. The circRNA expression profiles were determined using microarray in three pairs of plasma samples from patients with proliferative IH and healthy control individuals. Expression of the identified circRNAs was verified using quantitative reverse transcription polymerase chain reaction (RT-qPCR), and bioinformatic analysis was performed to predict the microRNAs targeted by the validated circRNAs. In the circRNA expression profiles in the plasma of patients with IHs, we found 128 differentially expressed circRNAs, of which 72 were upregulated and 56 were downregulated. The downregulated expression of three circRNAs (hsa_circRNA_101566, hsa_circRNA_103546, and hsa_circRNA_103573) was verified using RT-qPCR. Circular RNAs (circRNAs) are noncoding RNAs that play important roles in tumor progression. Few studies have examined the circRNAs involved in infantile hemangioma (IH) progression. This study compared the circRNA expression levels in plasma samples from patients with IH and control individuals. The circRNA expression profiles were determined using microarray in three pairs of plasma samples from patients with proliferative IH and healthy control individuals. Expression of the identified circRNAs was verified using quantitative reverse transcription polymerase chain reaction (RT-qPCR), and bioinformatic analysis was performed to predict the microRNAs targeted by the validated circRNAs. In the circRNA expression profiles in the plasma of patients with IHs, we found 128 differentially expressed circRNAs, of which 72 were upregulated and 56 were downregulated. The downregulated expression of three circRNAs (hsa_circRNA_101566, hsa_circRNA_103546, and hsa_circRNA_103573) was verified using RT-qPCR. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that all identified networks participated in angiogenesis and tumor formation and progression. We found that hsa_circRNA_101566, which can regulate the mammalian target of rapamycin signaling pathway, may be an important regulatory molecule in IH development and that targeting of hsa_miR_520c can indirectly regulate the vascular endothelial growth factor signaling pathway. Further studies are needed to clarify these effects and the underlying mechanisms.
ORGANISM(S): Homo sapiens
PROVIDER: GSE162905 | GEO | 2021/05/12
REPOSITORIES: GEO
ACCESS DATA