Chlorophyll content is a sensetive indicator of silver nanoparticle toxicity in Arabidopsis thaliana
Ontology highlight
ABSTRACT: Purpose: Analyze changes in the transcriptome of Arabidopsis thaliana in response to sublethal concentrations of silver nanoparticles in order to gain insight into phytotoxicity caused by these nanomaterials. Methods: mRNA was extracted from non-treated and silver nanoparticle-treated 14-day old Arabidopsis thaliana seedlings using the RNAeasy extraction kit (Qiagen). RNA-seq libraries (3 rep/treatment and 3 reps/control) constructed with the TruSeq Stranded mRNA Sample Preparation kit (Illumina) were single-end sequenced (100-nt read length) on an Illumina HiSeq2500 system. Reads were mapped to the A. thaliana TAIR10 reference genome sequence and transcript levels were analyzed using the softare CLC Genomics Workbench (version 7.0.40, Qiagen). Results: Chronic exposure of A. thaliana plants to silver nanoparticles caused a change in abundance of transcripts involved in cell wall synhtesis and response to oxidative and biotic stress-related genes. Conclusions: While exposure to silver nanoparticle lead to gene expression changes, the reduction in chlorophyll concentration and carbon assimilation rate measured in exposed plants cannot be attributed to a shift in photosynthesis-related gene regulation.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE163583 | GEO | 2020/12/22
REPOSITORIES: GEO
ACCESS DATA