ABSTRACT: Pulmonary fibrosis (PF) is associated with many chronic lung diseases including Systemic sclerosis (SSc), Idiopathic Pulmonary Fibrosis (IPF) and Cystic Fibrosis (CF) which are characterized by the progressive accumulation of mesenchymal cells and formation of scar tissue. Th2 T cell-derived cytokines including IL-4 and IL-13 have been shown to contribute to inflammation and fibrotic remodeling in multiple tissues. Interleukin-31 (IL-31) is a newly identified cytokine that is predominantly produced by CD4 Th2 T cells, but its signaling receptor IL-31RA is primarily expressed by non-hematopoietic cells. However, the potential role of the IL-31-IL31RA axis in pulmonary inflammation and fibrosis has remained largely unknown. To determine the role of IL-31 signaling in pulmonary fibrosis, wildtype, and IL-31RA knockout mice were treated with bleomycin and measured changes in total lung transcripts using RNA-seq. The total lung transcriptome analysis showed a significant reduction in fibrosis-associated gene transcripts including extracellular matrix and epithelial cell-associated gene networks.
Project description:Interleukin-31 (IL-31), a T cells derived cytokine which is mainly produced by CD4+ T cells skewed towards Th2 phenotypes. It signals via a heterodimeric receptors composed of IL-31RA and OSMR that is expressed constitutively in epithelial cells and keratinocytes. IL-31 is shown to play a pathogenic role in allergic and inflammatory diseases. Transgenic mice overexpressing IL-31 have a phenotype similar to atopic dermatitis. Here, we studied the role of IL-31 in skin damage by intradermal administration of recombinant IL-31. Notably, IL-31 was sufficient to increase epidermal basal cell proliferation and thickening of the epidermal layer of skin in mice. Analysis of skin transcriptome indicates a significant increase in the transcripts involved in epidermal cell proliferation and pathological skin remodeling. Thus, our study revealed an important role of IL-31 signaling in activating transcriptional programs involved in the pathophysiology of skin diseases.
Project description:Deletion of the gene encoding Foxa2, a winged helix transcription factor selectively expressed in respiratory epithelial cells, caused spontaneous pulmonary eosinophilic inflammation and goblet cell metaplasia. Loss of Foxa2 induced the recruitment and activation of myeloid dendritic cells (mDCs) and Th2 cells in the lung, and was associated with the increased production of T helper 2 (Th2) cytokines and chemokines. mRNA microarray analysis demonstrated that deletion of Foxa2 induced the expression of a number of mRNAs regulating pulmonary dendritic cell activation, Th2 mediated inflammation, and goblet cell differentiation. The spontaneous pulmonary inflammation and goblet cell metaplasia caused by loss of Foxa2 was inhibited by treatment of newborn Foxa2â??/â?? mice with monoclonal IL-4Ralpha antibody. Expression of Foxa2 in non-ciliated secretory cells (Clara cells) in vivo inhibited goblet cell differentiation induced by pulmonary allergen exposure. The respiratory epithelium plays a central role in the regulation of Th2-mediated inflammation and innate immunity in the developing lung in a process regulated by Foxa2. To investigate the role of Foxa2 and its downstream targets associated with the Th2 inflammation and goblet cell hyperplasia, RNAs were isolated from the lungs of Foxa2-/- and control littermates at PN15. Lung cRNA was hybridized to the murine genome MOE430 V2 chips.
Project description:Memory helper T cells provide long-lasting host defeMemory helper T cells provide long-lasting host defense against microbial pathogens, while distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes in allergic inflammation remain unknown. We found that Interleukin-33 (IL-33) enhanced Amphiregulin production by the IL-33 receptor, ST2hi memory T helper-2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of Osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and Amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of Amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and Osteopontin-producing eosinophils. Thus, the IL-33-Amphiregulin-Osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders. against microbial pathogens, while distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes in allergic inflammation remain unknown. We found that Interleukin-33 (IL-33) enhanced Amphiregulin production by the IL-33 receptor, ST2 hi memory T helper-2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of Osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and Amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of Amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and Osteopontin-producing eosinophils. Thus, the IL-33-Amphiregulin-Osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.
Project description:Deletion of the gene encoding Foxa2, a winged helix transcription factor selectively expressed in respiratory epithelial cells, caused spontaneous pulmonary eosinophilic inflammation and goblet cell metaplasia. Loss of Foxa2 induced the recruitment and activation of myeloid dendritic cells (mDCs) and Th2 cells in the lung, and was associated with the increased production of T helper 2 (Th2) cytokines and chemokines. mRNA microarray analysis demonstrated that deletion of Foxa2 induced the expression of a number of mRNAs regulating pulmonary dendritic cell activation, Th2 mediated inflammation, and goblet cell differentiation. The spontaneous pulmonary inflammation and goblet cell metaplasia caused by loss of Foxa2 was inhibited by treatment of newborn Foxa2∆/∆ mice with monoclonal IL-4Ralpha antibody. Expression of Foxa2 in non-ciliated secretory cells (Clara cells) in vivo inhibited goblet cell differentiation induced by pulmonary allergen exposure. The respiratory epithelium plays a central role in the regulation of Th2-mediated inflammation and innate immunity in the developing lung in a process regulated by Foxa2.
Project description:Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo, microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(-)) or expressing mouse CFTR (CFTR(+)). Whereas the histology of lungs from CFTR(-) and CFTR(+) mice was indistinguishable, statistically significant increases in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation, intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor CCAAT enhancer-binding protein (CEBP) delta and interleukin (IL) 1beta, both known to regulate CFTR expression, were induced, perhaps indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1beta and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. Lungs from sex-matched littermates at 3, 6, and 11 weeks of agewere carefully dissected and the conducting airways and mediastinal structures removed.
Project description:Despite robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and on the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the consequences of disrupting Il31 and its receptor Il31ra in a mouse model of house dust mite (HDM) allergic dermatitis. Il31-deficient mice displayed an increased number and proportion of cutaneous type 2 cytokine-producing CD4 T cells and serum IgE in response to HDM. Single cell RNA-sequencing analysis of skin CD45+ populations from HDM-treated skin revealed that Il4ra+ monocytes and macrophages capable of fueling a feedforward type 2 inflammatory loop were selectively enriched in Il31ra-deficient HDM dermatitis skin. Thus, IL-31 is not strictly a pro-inflammatory cytokine, but rather an immunoregulatory factor that limits the magnitude of type 2 inflammatory responses in skin.
Project description:Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease where invasive pulmonary myofibroblasts secrete collagen and destroy lung integrity. Here we show that IL-11 is upregulated in the lung of IPF patients, associated with disease severity and is secreted from IPF fibroblasts. In vitro, IL-11 stimulates lung fibroblasts to become invasive, ACTA2+ve, collagen secreting myofibroblasts, in an ERK-dependent fashion. In mice, fibroblast-specific transgenic expression or administration of Il-11 drives lung fibroblast-to-myofibroblast transformation and causes lung fibrosis. Il11ra1 deleted mice, whose lung fibroblasts are unresponsive to pro-fibrotic stimulation, are protected from fibrosis in the bleomycin mouse model of pulmonary fibrosis. We generated an IL-11 neutralising antibody that blocks lung fibroblast activation downstream of multiple stimuli and reverses myofibroblast activation. In therapeutic studies, anti-IL-11 treatment both prevented and reversed lung fibrosis, which was accompanied by diminished Erk activation. These data prioritise IL-11 as a drug target for lung fibrosis and IPF.
Project description:Bleomycin (BLM) induces lung injury, leading to inflammation and pulmonary fibrosis. Regulatory T cells (Tregs) maintain self-tolerance and control host immune responses. However, little is known about their involvement in the pathology of pulmonary fibrosis. Here we show that a unique Treg subset that expresses trefoil factor family 1(Tff1) emerges in the BLM-injured lung. These Tff1-expressing Tregs (Tff1-Tregs) were induced by IL-33. Moreover, although Tff1 ablation in Tregs had no impact, selective ablation of Tff1-Tregs using an intersectional genetic method promoted pro-inflammatory features of macrophages in the injured lung and exacerbated the fibrosis. Taken together, our study revealed the presence of a unique Treg subset expressing Tff1 in BLM-injured lungs and their critical role in the injured lung to ameliorate fibrosis.
Project description:Bleomycin (BLM) induces lung injury, leading to inflammation and pulmonary fibrosis. Regulatory T cells (Tregs) maintain self-tolerance and control host immune responses. However, little is known about their involvement in the pathology of pulmonary fibrosis. Here we show that a unique Treg subset that expresses trefoil factor family 1(Tff1) emerges in the BLM-injured lung. These Tff1-expressing Tregs (Tff1-Tregs) were induced by IL-33. Moreover, although Tff1 ablation in Tregs had no impact, selective ablation of Tff1-Tregs using an intersectional genetic method promoted pro-inflammatory features of macrophages in the injured lung and exacerbated the fibrosis. Taken together, our study revealed the presence of a unique Treg subset expressing Tff1 in BLM-injured lungs and their critical role in the injured lung to ameliorate fibrosis.