P53 binding in mouse embryonic stem cells untreated or treated with adriamycin
Ontology highlight
ABSTRACT: Both p53 and the Wnt signaling pathways play important roles in tumorigenesis and development. However, few studies, particularly on a genome-wide scale, have linked these two pathways. Here we show that p53 directly regulates the Wnt signaling pathway in murine embryonic stem cells (mESCs) using an integrated genome-wide approach. A chromatin-immunoprecipitation-based microarray assay (ChIP-chip) reveals that the Wnt signaling pathway is significantly over-represented in p53 bound genes. Using gene expression microarray and real-time PCR, we demonstrate that the expressions of many Wnts are robustly induced by various stresses, including DNA damage and hypoxia that activate p53. Importantly, the activation of p53 is a prerequisite for the induction of Wnts. Moreover, conditional medium (CM) collected from ultraviolet (UV)-treated mESCs contains an anti-differentiation activity, which can be lowered by either the addition of Wnt signaling inhibitors into the CM or the reduction of p53 levels in UV-treated mESCs. These results suggest that stressed mESCs utilize the p53-Wnt signaling axis to signal neighboring mESCs to delay the differentiation. Together, our results uncover a novel connection between p53 and the Wnt signaling pathways in mediating cell-to-cell communication in mESCs, and provide insights into the functions of these two pathways in tumorigenesis and development
ORGANISM(S): Mus musculus
PROVIDER: GSE16427 | GEO | 2010/01/19
SECONDARY ACCESSION(S): PRJNA116373
REPOSITORIES: GEO
ACCESS DATA