Project description:NAD(P)H:quinone Oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3’ untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3’UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase, one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as RNA-binding protein may help to explain its pleiotropic biological effects.
Project description:Alternative polyadenylation results in different 3’ isoforms of messenger RNA (mRNA) transcripts. Alternative polyadenylation in the 3’ untranslated region (3’UTR) can alter RNA localization, stability and translational efficiency. The SERPINA1 mRNA has two distinct 3’ UTR isoforms, both of which express the protease inhibitor α-1-antitrypsin (A1AT). A1AT is an acute phase protein that is expressed and secreted from liver hepatocytes and upregulated during inflammation. Low levels of A1AT in the lung contributes to chronic obstructive pulmonary disease, while misfolding of A1AT in the liver contributes to liver cirrhosis. We analyzed the dynamics of alternative polyadenylation during cellular stress by treating the liver cell line HepG2 with the cytokine interleukin 6 (IL-6), ethanol or peroxide. SERPINA1 is transcriptionally upregulated after IL-6 treatment and has altered polyadenylation, resulting in an increase in long 3’UTR isoforms. We find that the long 3’UTR represses endogenous A1AT protein expression even with high levels of SERPINA1 mRNA. SERPINA1 expression and 3’ end processing are not affected by ethanol or peroxide. IL-6-induced changes in transcriptome-wide transcriptional regulation suggest changes to the endoplasmic reticulum and in secretory protein processing. Our data suggest that inflammation influences polyA site choice for SERPINA1 transcripts, resulting in reduced A1AT protein expression.
Project description:SERPINA1, a member of the serine protease inhibitor family, plays a role in viral infection and inflammation by regulating the activities of serine and cysteine proteases. To further investigate the antiviral role SERPINA1 played in GCRV (Grass carp Reovirus) infection, a polyclonal antibody of SERPINA1 was prepared, and the protein interacting with SERPINA1 was screened by CoIP/MS in grass carp hepatopancreas tissue. Samples of hepatopancreas tissues from grass carp (n=3) before (healthy) and 8 days after the infection (post-infection) were selected. Grass carp were infected by intraperitoneal injection. The total tissue proteins were extracted according to the manufacturer’s instructions for cell lysate (Beyotime, Shanghai, China). The types and abundance of proteins bound to SERPINA1 before and after the infection were detected and analyzed using CoIP-MS.
Project description:We previously found C9orf72-associated (c9ALS) and sporadic amyotrophic lateral sclerosis (sALS) brain transcriptomes comprise thousands of defects, among which, some are likely key contributors to ALS pathogenesis. We have now generated complementary methylome data and combine these two data sets to perform a comprehensive “multi-omic” analysis to clarify the molecular mechanisms initiating RNA misregulation in ALS. We found that c9ALS and sALS patients have generally distinct but overlapping methylome profiles, and that the c9ALS- and sALS-affected genes and pathways have similar biological functions, indicating conserved pathobiology in disease. Our results strongly implicate SERPINA1 in both C9orf72 repeat expansion carriers and non-carriers, where expression levels are greatly increased in both patient groups across the frontal cortex and cerebellum. SERPINA1 expression is particularly pronounced in C9orf72 repeat expansion carriers for both brain regions, where SERPINA1 levels are strictly down regulated across most human tissues, including the brain, except liver and blood, and are not measurable in E18 mouse brain. The altered biological networks we identified contain critical molecular players known to contribute to ALS pathology, which also interact with SERPINA1. Our comprehensive combined methylation and transcription study identifies new genes and highlights that direct genetic and epigenetic changes contribute to c9ALS and sALS pathogenesis.
Project description:In cervical cancer, an important mechanism by which tumour cells escape immune surveillance is loss of HLA class I, enabling tumours to evade recognition and lysis by cytotoxic T lymphocytes. Some tumours, however, escape from immune surveillance without accumulating defects in antigen presentation. We hypothesized that tumours with no or partial loss of HLA class I develop alternative mechanisms to prevent immune surveillance. To investigate this hypothesis, genome-wide expression profiling using Illumina arrays was performed on cervical squamous cell carcinomas showing overall loss of HLA class I, partial and normal HLA class I protein expression. Statistical analyses revealed no significant differences in gene expression between tumours with partial (n = 11) and normal HLA class I expression (n = 10). Comparison of tumours with normal/partial HLA class I expression (n = 21) with those with overall loss of HLA class I expression (n = 11) identified 150 differentially expressed genes. Most of these genes were involved in the defense response (n = 27), and, in particular, inflammatory and acute phase responses. Especially SerpinA1 and SerpinA3 were found to be upregulated in HLA positive tumours (3.6 and 8.2 fold, respectively), and this was confirmed by real-time PCR and immunohistochemistry. In a group of 117 tumours, high SerpinA1 and SerpinA3 expression in association with normal/partial HLA expression correlated significantly with poor overall survival (p = 0.035 and p = 0.05, respectively). This study shows that HLA positive tumours are characterized by a higher expression of genes associated with an inflammatory profile and that expression of the acute phase proteins SerpinA1 and SerpinA3 in HLA positive tumours is associated with worse prognosis. Keywords: Cell type comparison