Lasting consequences of psyllid (Bactericera cockerelli L.) infestation on tomato defense, gene expression, and growth
Ontology highlight
ABSTRACT: BACKGROUND: The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. RESULTS: To characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) three weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable three weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter three weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. CONCLUSION: These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth.
Project description:Purpose: The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of tomato (Solanum lycopersicum) and potato (S. tuberosum) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’. Plants undergo physiological, transcriptomic, or epigenetic changes in order to mount a stronger, faster response against secondary challenges by previously perceived threats. This is called defense ‘priming’ and it likely has an impact on vectored disease transmission. Currently, it is still unknown whether or not psyllid infestation has any lasting consequences for tomato gene expression or defense. To characterize the genes potentially involved in tomato priming against psyllids, RNA was extracted from psyllid-primed and uninfested tomato (Moneymaker) leaves three weeks after infestation. Methods: RNA was extracted and sequenced from plants three weeks after psyllid infestation. Plants were either left alone (Control or C) or infested with psyllids (Primed or J1). Libraries were developed using the TruSeq RNA Library Prep Kit v2. Sequencing was performed on the Illumina PE HiSeq 2500 v4 platform. Processed sequences were uploaded to the CyVerse Discovery Environment computational infrastructure where bioinformatic analysis was performed using the Tuxedo Suite 2 workflow. Results: Illumina HiSeq sequencing of tomato cDNA libraries produced 132,428,443 total reads that met FastQC quality control criteria. 94.6% of all reads mapped to vSL3.0 of the S. lycopersicum genome. CuffDiff2 analysis identified 310 differentially expressed genes (DEGs) between control and psyllid-primed plants (q-value <0.01). Conclusions: A week-long infestation by a small number of B. cockerelli had lasting consequences for gene expression in tomato plants. Homologs of the DEGs were associated with 1) defense against abiotic and biotic stress, 2) growth and development, and 3) components of plant biology indirectly involved in plant growth and development such as homeostasis, transcription/translation, and molecular transport.
Project description:The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’ (or Lso). Lso disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant’s responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies. To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato ‘Moneymaker’ leaves three weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection. The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.
Project description:In this study we compare the transcriptome response of two potato varieties Atlantic and NY138 to the infection by Candidatus Liberibacter solanacearum. Four weeks old potato plant grown in growth chamber were infested with potato psyllid to transmit the pathogen Candidatus Liberibacter solanacearum. Three weeks after infestation leaf samples were collected for RNA extraction and transcriptome analysis. This is the first transcriptome study on this potato disease.
Project description:Tomato plants are commonly attacked by herbivorous mites, including by generalist Tetranychus urticae and specialists Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, via poorly understood mechanisms, T. evansi and A. lycopersici suppress plant defenses and, consequently, maintain a high performance on tomato. Accordingly, on a shared host, non-adapted T. urticae can be facilitated by either of the specialist mites, likely via the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used microarrays to analyze transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but lowest increases were detected after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes was differentially expressed upon single infestations with T. urticae or A. lycopersici, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that T. evansi dampened T. urticae-triggered host responses on a genome-wide scale, while A. lycopersici primarily suppressed T. urticae-induced JA defenses. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Project description:‘Candidatus Liberibacter solanacearum’ (Lso) has emerged as a major pathogen of crops worldwide. This bacterial pathogen is transmitted by Bactericera cockerelli, tomato psyllid, to solanaceous crops. In this study, the transcriptome profiles of Solanum lycopersicum exposed to B. cockerelli infestation and to Lso infection were evaluated at one, two and four weeks following colonization and/or infection. Plant transcriptional response to Lso-negative B. cockerelli was different than plant responses to Lso-positive B. cockerelli. The comparative transcriptomes of plant responses to Lso-negative B. cockerelli revealed the up-regulation of genes associated with plant defenses regardless of the time-point. In contrast, the plant general responses to Lso-positive B. cockerelli and Lso-infection were temporally different. Infected plants down-regulated defense genes at week one while delayed the up-regulation of the defense genes to week two and four, time points in which early signs of disease development were also detected in the transcriptional response. For example, infected plants up-regulated carbohydrate metabolism genes which could be linked to the disruption of sugar distribution usually associated with Lso infection. Also, infected plants down-regulated photosynthesis genes potentially resulting in plant chlorosis, another symptom associated with Lso infection. Overall, this study highlights that S. lycopersicum plants induced different sets of genes in response to different stages of B. cockerelli infestation and Lso infection. This is the first transcriptome study of tomato responses to B. cockerelli and Lso, a first step in the direction of finding plant defense genes to enhance plant resistance.
Project description:Lycopersicon esculentum cv. Moneymaker tomato plants were grown for 4 weeks in greenhouse conditions (16h/8h light/darkness, 27 °C). L. esculentum was randomly sorted into two groups of 16 plants each and a third reference group of 6 plants. All plants were contained individually in mesh bags. One group of 16 plants was infested with 25 female adult tomato psyllids that were 2-3 days old per plant. The other two groups of 16 and 6 plants were not infested (healthy control, and reference pool). After 3 days, the adults were removed from the infested plants to allow for egg eclosion and eventually nymphal development. In this study, leaves infested and healthy plants were harvested for RNA extraction at 0, 3, 11, and 17 days after infestation with tomato psyllids. The reference pool was harvested on day 0. Tissue (all-leaflets) from at least three plants per group was collected, flash frozen in liquid nitrogen and pooled for each time point (0, 3, 11 and 17 days after infestation) to represent treatments for before feeding (0 d), adult feeding and egg deposition (3 d), 1st and 2nd instar feeding (11 d) and 3rd to 5th instar feeding (17 d ), respectively. The whole experiment was repeated three times (three biological replicates). Plant tissues were ground using a cold mortar and pestle. Total tomato leaf RNA was extracted using the hot-phenol protocol. The RNA was precipitated, pooled, cleaned with a kit and stored at –80C. Two populations of single-stranded cDNAs will be generated from the aliquots and labeled with the cyanine Cy3 and Cy5 fluorophores. RNA isolated from the reference pool (0 d) will be pooled from each replicate and will be labeled with Cy5; this is the reference sample for each hybridization. RNA isolated from leaves infested with tomato psyllids and healthy uninfested plants from each time point will be query samples labeled with Cy3. The two samples of labeled cDNA will be simultaneously hybridized to the same microarray. Keywords: Reference design
Project description:We have implemented an integrated Systems Biology approach to analyze overall transcriptomic reprogramming and systems level defense responses in the model plant Arabidopsis thaliana during an insect (Brevicoryne brassicae) and a bacterial (Pseudomonas syringae pv. tomato strain DC3000) attack. The main aim of this study was to identify the attacker-specific and general defense response signatures in the model plant Arabidopsis thaliana while attacked by phloem feeding aphids or pathogenic bacteria. Defense responses and networks, unique and specific for aphid or Pseudomonas stresses were identified. Our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and thus opened up a new direction to conduct large-scale targeted experiments to explore detailed regulatory links among them. The presented results provide a first comprehensive understanding of Arabidopsis - B. brassicae and Arabidopsis - P. syringae interactions at a systems biology level. Arabidopsis thaliana (ecotype Colombia-0) seeds were grown in 6-cm-diameter pots filled with a sterile soil mix (1.0 part soil and 0.5 part horticultural perlite), 3 plants per pot. Plants were kept in growth chambers VM-CM-6tsch VB 1514 (VM-CM-6tsch Industrietechnik GmbH, Germany) under the following conditions: a 8/16 h (light/dark) photoperiod at 22M-BM-0C/18M-BM-0C, 40%/70% relative humidity, and 70/0 M-NM-<mol m-2s-1 light intensity. After 32 days plants had 8 fully developed leaves. Each plant was infested with 32 wingless aphids [Brevicoryne Brassicae] (4 per leaf), which were transferred to leaves with a fine paintbrush. Infested plants and aphid-free controls were kept in plexiglass cylinders. Plants were harvested 72 h after infestation between the 6th and 8th hour of the light photoperiod. Four biological replicates were prepared from aphid infested and control plants, each sampled from 15 individual plants. Whole rosettes were cut at the hypocotyls and aphids were removed by washing with Milli-Q-filtered water. Differences in transcriptional responses were measured by comparing genes expression of aphid infested plants against non-infested control plants.
Project description:Infestation with white-backed planthopper (WBPH) to rice caused induced resistance to rice pathogens but brown planthopper (BPH) infestation induce weaker resistance to rice pathogens. We compared changes in gene expression in rice plants infested with WBPH and BPH to gain some insight into the WBPH-induced resistance to rice pathogens. An analysis, using microarrays, of gene expression in rice plants infested with these planthoppers revealed that WBPH infestation caused high induction of many defense-related genes including pathogenesis-related (PR) genes than BPH infestation. Furthermore, hydroperoxide lyase 2 (OsHPL2) which is an enzyme to produce C6 volatiles was induced by WBPH infestation, but not by BPH infestation. Keywords: response to herbivory; induced resistance
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360 Keywords: ordered