Evaluation of BMP2/miRNA expression systems (hybrid vectors) for potent therapeutic efficacy in bone tissue regeneration
Ontology highlight
ABSTRACT: Reconstruction of bone defects and compensation of deficient repair mechanisms represent important goals within the field of regenerative medicine and require novel safe strategies for translation into the clinic. Therefore, we generated a nonviral osteogenic gene therapeutic (hybrid) vector system, combining an improved bone morphogenetic protein 2 (BMP2) gene cassette and pro-osteogenic microRNAs. The hybrid vectors were tested for their functionality and osteogenic differentiation potential in C2C12 and C3H/10T1/2 via alkaline phosphatase enzyme activity assay, enzyme-linked immunosorbent assay and reverse transcription quantitative polymerase chain reaction analysis of miRNA and osteogenic marker expression. In a mouse ectopic bone formation model, osteoinduction in transfected muscle tissue was analysed via micro computed tomography scans and histological staining. All tested hybrid vector systems led to an increase in BMP2 protein overexpression in C2C12 and C3H/10T1/2, when compared with miRNA-lacking constructs. Incorporated miRNAs were found to be efficiently upregulated. Distinct intra- and extracellular localization preferences were observed. The hybrid vector consisting of BMP2 and miR-590 revealed highest potential of inducing osteogenic differentiation. The favourable effect of combining overexpression of BMP2 and miRNAs has been shown in vitro and in vivo. Induction of mineralization was observed in an ectopic bone mouse model, although high variability in terms of size and shape indicates potential for improvement regarding plasmid administration and retention. We believe this study contributes in a valuable way to the preclinical knowledge of nonviral gene therapy for tissue regeneration. Also, we hope to encourage additional research on multi-target gene therapeutic approaches.
ORGANISM(S): Mus musculus
PROVIDER: GSE166110 | GEO | 2021/12/31
REPOSITORIES: GEO
ACCESS DATA