ABSTRACT: Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Totipotent cells have more robust developmental potency than any other cell types, giving rise to both embryonic and extraembryonic tissues. Stable totipotent cultures and deciphering the principles of totipotency regulation would be invaluable to understand cell plasticity and lineage segregation in early development. Our approach of remodeling the pericentromeric heterochromatin and re-establishing the totipotency-specific broad H3K4me3 domains promotes the pluri-to-totipotency transition. Our protocol establishes a closer match of mouse 2-cell (2C) embryos than any other 2C-like cells. These totipotent-like stem cells (TLSCs) are stable in culture and possess unique molecular features of the mouse 2C embryo. Functionally, TLSCs are competent for germline transmission and give rise to both embryonic and extraembryonic lineages at high frequency. Therefore, TLSCs represent a highly valuable cell type for studies of totipotency and embryology.
Project description:Blastoids, a structure similar to blastocysts in morphological and molecular level, can be applied to regeneration research. Using totipotent cells to construct blastoids will extend the information of early development to an earlier stage, and explore clues of regeneration. Totipotent blastomere-like cells (TBLCs) are a novel type of stably cultured mouse totipotent cell line generated by inhibiting spliceosomes. Here, we constructed blastoids (TBL-blastoids) in a new three-dimensional culture system using TBLCs. Morphological and transcriptomic analysis revealed TBL-blastoids contained typical morphology and key cell lineages of blastocysts and had higher degree of consistency in developmental rate and morphology compared to other blastoids. Moreover, TBL-blastoids implanted into uterus, induced decidua and even developed to embryonic tissues, indicating their in vivo developmental potential. The expansion and structures of TBL-blastoids in the IVC system also showed their in vitro developmental potential. The efficiency of generating TBL-blastoids and implantation rate suggest the necessity of TE-like component formation. Meanwhile, TBLCs can differentiate into extraembryonic cell lines directly, which provides an alternative strategy for evaluating totipotency. Furthermore, we explored the impacts of senescence, a central role in regeneration, on TBLCs and found that cellular senescence impaired the totipotency of TBLCs and the efficiency of generating blastoids. Also, the in vivo and in vitro developmental potential of TBL-blastoids were declined. In conclusion, the induction of TBLCs into blastoids and extraembryonic cells is valuable for promoting regeneration, early embryonic development study and evaluating totipotency.
Project description:Blastoids, a structure similar to blastocysts in morphological and molecular level, can be applied to regeneration research. Using totipotent cells to construct blastoids will extend the information of early development to an earlier stage, and explore clues of regeneration. Totipotent blastomere-like cells (TBLCs) are a novel type of stably cultured mouse totipotent cell line generated by inhibiting spliceosomes. Here, we constructed blastoids (TBL-blastoids) in a new three-dimensional culture system using TBLCs. Morphological and transcriptomic analysis revealed TBL-blastoids contained typical morphology and key cell lineages of blastocysts and had higher degree of consistency in developmental rate and morphology compared to other blastoids. Moreover, TBL-blastoids implanted into uterus, induced decidua and even developed to embryonic tissues, indicating their in vivo developmental potential. The expansion and structures of TBL-blastoids in the IVC system also showed their in vitro developmental potential. The efficiency of generating TBL-blastoids and implantation rate suggest the necessity of TE-like component formation. Meanwhile, TBLCs can differentiate into extraembryonic cell lines directly, which provides an alternative strategy for evaluating totipotency. Furthermore, we explored the impacts of senescence, a central role in regeneration, on TBLCs and found that cellular senescence impaired the totipotency of TBLCs and the efficiency of generating blastoids. Also, the in vivo and in vitro developmental potential of TBL-blastoids were declined. In conclusion, the induction of TBLCs into blastoids and extraembryonic cells is valuable for promoting regeneration, early embryonic development study and evaluating totipotency.
Project description:It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells that can be stably maintained long-term in vitro. TPS cells shared transcriptomic features with 2-cell mouse embryos and express totipotent markers. In vivo chimeric assays show that these cells have embryonic and extraembryonic developmental potentials at the single cell level. Moreover, we show that TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Our study demonstrates the feasibility of capturing and maintaining totipotency in vitro.
Project description:Totipotent cells have the ability of generating embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential was identified within ESC cultures. These cells, known as 2 cell (2C)-like cells, arise from ESC and display similar features to those found in the totipotent 2 cell embryo. However, the molecular determinants of 2C like conversion have not been completely elucidated. Here, we show that CTCF is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by DUX expression was associated with DNA damage at a subset of CTCF binding sites. Endogenous or DUX-induced 2C-like ESC showed decreased CTCF enrichment at known binding sites, suggesting that acquisition of a totipotent-like state is associated with a highly dynamic chromatin architecture. Accordingly, depletion of CTCF in ESC efficiently promoted spontaneous and asynchronous conversion to a totipotent-like state. This phenotypic reprogramming was reversible upon restoration of CTCF levels. Furthermore, we showed that transcriptional activation of the ZSCAN4 cluster was necessary for successful 2C-like reprogramming. In summary, we revealed the intimate relation between CTCF and totipotent-like reprogramming.