LSD1 promotes secretory cell specification to drive BRAFmutant colorectal cancer
Ontology highlight
ABSTRACT: Despite the connection to distinct mucus-containing colorectal cancer (CRC) histological subtypes, the role of secretory cells, including goblet and enteroendocrine (EEC) cells, in CRC progression has been underexplored. Analysis of TCGA and single cell RNA sequencing data demonstrates that multiple secretory progenitor populations are enriched in BRAF-mutant CRC patient tumors and cell lines. Enrichment of EEC progenitors in BRAF-mutant CRC is maintained by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of EECs. Mechanistically, secretory cells and the factors they secrete, such as Trefoil factor 3, are shown to promote colony formation and activation of cell survival pathways in the entire cell population. We further identify LSD1 as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss reduces tumor growth and metastasis. This work establishes EEC progenitors, in addition to goblet cells, as targetable populations in BRAF-mutant CRC and identifies LSD1 as a therapeutic target in secretory lineage-containing CRC.
ORGANISM(S): Homo sapiens
PROVIDER: GSE167262 | GEO | 2021/06/21
REPOSITORIES: GEO
ACCESS DATA