Project description:The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Δ-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Δ-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Δ-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at +164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.
Project description:RapGEF2 is one of many guanine nucleotide exchange factors (GEFs) that specifically activate Rap1. Here, we generated RapGEF2 conditional knockout mice and studied its role in embryogenesis and fetal as well as adult hematopoietic stem cell (HSC) regulation. RapGEF2 deficiency led to embryonic lethality at ~ E11.5 due to severe yolk sac vascular defects. However, a similar number of Flk1(+) cells were present in RapGEF2(+/+) and RapGEF2(-/-) yolk sacs indicating that the bipotential early progenitors were in fact generated in the absence of RapGEF2. Further analysis of yolk sacs and embryos revealed a significant reduction of CD41 expressing cells in RapGEF2(-/-) genotype, suggesting a defect in the maintenance of definitive hematopoiesis. RapGEF2(-/-) cells displayed defects in proliferation and migration, and the in vitro colony formation ability of hematopoietic progenitors was also impaired. At the molecular level, Rap1 activation was impaired in RapGEF2(-/-) cells that in turn lead to defective B-raf/ERK signaling. Scl/Gata transcription factor expression was significantly reduced, indicating that the defects observed in RapGEF2(-/-) cells could be mediated through Scl/Gata deregulation. Inducible deletion of RapGEF2 during late embryogenesis in RapGEF2(cko/cko)ER(cre) mice leads to defective fetal liver erythropoiesis. Conversely, inducible deletion in the adult bone marrow, or specific deletion in B cells, T cells, HSCs, and endothelial cells has no impact on hematopoiesis.
Project description:Plasmodium-specific CD4+ T cells from mice infected with Plasmodium chabaudi chabaudi AS parasites were recovered at Days 0, 4, 7, and 32 to undergo processing and to generate scATAC-seq dataset. At Day 7, CXCR5+ and CXCR6+ cells were recovered separately. At Day 32, mice were administered with either saline or artesunate (intermittent artesunate therapy - IAT). scATAC-seq dataset was analysed to investigate epigenomic landscapes of CD4+ T cells from effector to memory states.
Project description:SMC3 encodes a subunit of the cohesin complex that has canonical roles in regulating sister chromatids segregation during mitosis and meiosis. Recurrent heterozygous mutations in SMC3 have been reported in acute myeloid leukemia (AML) and other myeloid malignancies. In this study, we investigated whether the missense mutations in SMC3 might have dominant-negative effects or phenocopy loss-of-function effects by comparing the consequences of Smc3-deficient and -haploinsufficient mouse models. We found that homozygous deletion of Smc3 during embryogenesis or in adult mice led to hematopoietic failure, suggesting that SMC3 missense mutations are unlikely to be associated with simple dominant-negative phenotypes. In contrast, haploinsufficiency was tolerated during embryonic and adult hematopoiesis. Under steady-state conditions, Smc3 haploinsufficiency did not alter colony forming in methylcellulose, only modestly decreased mature myeloid cell populations, and led to limited expression changes and chromatin alteration in Lin-cKit+ bone marrow cells. However, following transplantation, engraftment, and subsequent deletion, we observed a hematopoietic competitive disadvantage across myeloid and lymphoid lineages and within the stem/progenitor compartments. This disadvantage was not affected by hematopoietic stresses, but was partially abrogated by concurrent Dnmt3a haploinsufficiency, suggesting that antecedent mutations may be required to optimize the leukemogenic potential of Smc3 mutations.
Project description:To study developmental trajectories in brain organoids, we conducted scRNA-seq and scATAC-seq in parallel on a dense timecourse of early development.