Pre and post Classical Swine Fever (CSF) vaccination PBMC transcriptomes of Indian Ghurrah and Landrance pigs
Ontology highlight
ABSTRACT: In this study, we generated the PBMC transcriptome data of 3 Landrace, and 3 indigenous Ghurrah pigs before and 7 days after Classical Swine fever vaccination. The piglets were 8-12 weeks of age. The sequencing was done on Illumina X-Ten platform, generating average of 39 million 150 bp paired end reads for each sample.
Project description:In this study, the monocyte-derived macrophages (MDMs) were cultured and challenged with CSF virulent virus strain and response was studied at 48 hours post-infection. Transcriptome profiles were generated in the MDMs of 3 Landrace, and 3 indigenous Ghurrah pigs before and 48 hours after challenge with Classical Swine fever virulent virus strain under in-vitro conditions. The piglets were 3 months old and free of maternally derived antibodies against CSF. The sequencing was done on Illumina X-Ten platform, generating average of 69.78 million paired end reads for each sample.
Project description:Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression.After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a+) and a decrease in CD4+ T cells in the PBMCs from CSFV PI animals after ASFV infection.Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice versa. ASFV infection could be a trigger factor for the disease progression in CSFV PI animals, as their survival after ASFV was similar to that of the pestivirus-free ASFV-infected group. This fact suggests a high resistance in CSFV PI animals even against a virus like ASFV; this may mean that there are relevant implications for CSF control in endemic countries. The diagnosis of ASFV and CSFV co-infection in endemic countries cannot be ruled out and need to be studied in greater depth.
Project description:African swine fever virus (ASFV) is a lethal animal pathogen which enters its host cells through endocytosis. So far, host factors specifically required for ASFV replication have been barely identified. In this study a genome-wide CRISPR/Cas9 knockout screen in porcine cells indicated that the genes RFXANK, RFXAP, SLA-DMA, SLA-DMB, and CIITA are important for productive ASFV infection. The proteins encoded by these genes belong to the major-histocompatibility-complex II (MHC II), or swine-leucocyte-antigen-complex II (SLA II). RFXAP and CIITA are MHC II-specific transcription factors, whereas SLA-DMA/B are subunits of the non-classical MHC II molecule SLA-DM. Targeted knockout of either of these genes led to severe replication defects of different ASFV isolates, reflected by substantially reduced plating efficiency, cell-to-cell spread, and progeny virus titers. For the characterization of the knockouts on a proteome level the protein contents of the knockout cell lines were analyzed by mass spectrometry.
Project description:Classical swine fever virus (CSFV) is an etiologic agent that causes a highly contagious disease in pigs. Laying a foundation to solve problems in its pathogenic mechanism, microarray analysis was performed to detect the gene transcriptional profiles in peripheral blood mononuclear cells (PBMC) following infection with a Chinese highly virulent CSFV strain Shimen. Three susceptible pigs were inoculated intramuscularly with a lethal dose (1.0 × 106 TCID50) of CSFV. Pigs showed classical CSF signs, depletion of lymphocytes and monocytes consistent with CSFV infection, and the CSFV genome was also confirmed in the PBMC. The PBMC were isolated at 1, 3, 6 and 9 days post-inoculation (dpi). Total RNA were extracted and subjected to microarray analysis. Data showed that expression of 847 genes wherein 467 genes were known function and the remaining 380 genes were unknown function, and 541 up- and 306 down-regulation, altered after infection. There were 54, 181, 438 and 354 up- and 61, 120, 218 and 145 down-regulated genes presented on 1, 3, 6 and 9 dpi, respectively. These genes were involved in immune response (14.5%), apoptosis (3.3%), signal transduction (7.6%), transcription (4.4%), metabolism (11%), transport (3.9%), development (6.8%) and cell cycle (3.7%). Results demonstrated its usefulness in exploring the pathogenic mechanisms of CSFV.
Project description:African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever. Here, we determine the structures of endogenous African swine fever virus RNA polymerase in both nucleic acid-free and elongation states. The African swine fever virus RNA polymerase shares similarities with the core of typical RNA polymerases, but possesses a distinct subunit M1249L. Notably, the dynamic binding mode of M1249L with RNA polymerase, along with the C-terminal tail insertion of M1249L in the active center of DNA-RNA scaffold binding, suggests the potential of M1249L to regulate RNA polymerase activity within cells. These results are important for understanding the transcription cycle of African swine fever virus and for developing antiviral strategies.
Project description:The molecular mechanism underlying cardiac remodeling following exercise have been incompletely understood. Until now, most studies have been performed in rodents. We studied cardiac remodeling in the physiologically more relevant animal model, the swine. Microarray analysis was performed on animals that underwent either and exercise protocol or remained sedentary. RNA was isolated from tissue samples from the endocardial layer of the free wall of the left ventricle. RNA was isolated from 8 exercise-trained and 8 sedentary animals 4-5 weeks after start of the protocol. Each group contained 4 males and 4 females. Animals used for the study were 2-3 months old Yorkshire x Landrace swine. Only neutered males entered the study.