Transcriptional adaptation and enhancer rewiring promote metabolic resistance in BRAFmutated multiple myeloma (bulkRNA-seq)
Ontology highlight
ABSTRACT: Purpose: We examined how transcriptional state changes relate to clonal selection as BRAF inhibitor resistance develops in BRAF-mutated myeloma. Methods: To this end we generated three single-cell clones from U266, a BRAFK601N -mutated myeloma cell line and DP6- a BRAFV600E myeloma cell line. All three U266 and DP6 clones were subjected to long-term dabrafenib treatment at their established IC50 doses (U266: 10uM, DP6 1nM). Bulk RNA-seq was performed before treatment, day 7, day 14, day 42 and at time of resistance. Results: Transcriptional adaptation after seven days was homogeneous for all clones, but was different across both cell lines. Oxidative phosphorylation (OxPhos) emerged as the most consistently enriched signaling pathway in persistent cells from both cell lines as compared to baseline. Conclusions: BRAF inhibition in BRAF-mutated myeloma cells leads to transcriptional reprogramming with induction of OxPhos-related genes within a brief period of time.
Project description:Purpose: We examined the mechanisms of transcriptional adaptation in persistent cells and asked if transcriptional state changes can be attributed to alterations in enhancer activity. Methods: ChIPseq for the enhancer mark H3K27ac was performed in three single-cell clones derived from the multiple myeloma cell line U266 treted with dabrafenib vs. DMSO for 14 Results: We observed substantial epigenetic remodeling illustrated by a greater number of unique peaks in dabrafenib-persistent cells as compared to dabrafenib-naïve controls. Out of a total of 22756 merged peaks, which were called in at least three samples, 7645 (34%) were unique to persistent cells compared to 454 (2%) in untreated cells. Conclusions: Altered transcriptional states are associated with enhancer rewiring in drug-resistant myeloma
Project description:Multiple myeloma (MM) is a malignant disorder characterized by the clonal proliferation of plasma cells (PCs) in the bone marrow (BM). The genetic background and clinical course of the disease are largely heterogeneous, and MM pathophysiology ranges from the premalignant condition of monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM, symptomatic MM, and extramedullary MM/plasma cell leukemia (PCL). Recent genome-wide sequencing efforts have provided the rationale for molecularly aimed treatment approaches, identifying mutations that can be specifically targeted, such as those in the mitogen-activated protein kinase (MAPK) pathway, which represent the most prevalent mutations in MM. Among these, mutations affecting BRAF gene, detected in 4-15% of patients, are of potential immediate clinical relevance due to the availability of effective inhibitors of this serine-threonine kinase which are in fact being explored also in myeloma. In this study, we screened by next generation sequencing (NGS) a large and representative series of intramedullary and extramedullary MM patients, including primary and secondary plasma cell leukemia (pPCL and sPCL, respectively), for mutations in BRAF, NRAS and KRAS genes. We evaluated the relationship of identified variants with other clinical and biological features and determined the transcriptional signature associated with MAPK pathway activation in MM. To further elucidate the transcriptional programs modulated by BRAF activation in MM, we used the PLX4032 drug to inhibit BRAF activity in U266 human myeloma cell line (HMCL), carrying K601N mutation and showing constitutive activation of MEK/ERK signaling. After confirming its ability to suppress MAPK pathway and myeloma cell proliferation in culture in the U266 cell line, we investigated the specific modulation of gene expression induced by the drug. U266 cells were treated with PLX4032 (30 µM) or DMSO for 12 hours and subjected to gene expression profiling (GEP) analysis by using Affymetrix GeneChip Human Gene 1.0ST arrays.
Project description:Approximately 50% of melanomas harbor an activating BRAFV600E mutation. Standard of care involves a combination of inhibitors targeting mutant BRAF and MEK1/2, the substrate for BRAF in the MAPK pathway. PTEN loss of function mutations occur in 40% of BRAFV600E melanomas, resulting in increased PI3K/AKT activity that enhances resistance to BRAF/MEK combination inhibitor therapy. To compare the response of PTEN null to PTEN wild type cells in an isogenic background, CRISPR was used to knock out PTEN in the A375 melanoma cell line that harbors a BRAFV600E mutation. Kinome profiling was performed using the parental line and two PTEN KO clones (5 and 11), treated with DMSO, or treated with 100nM dabrafenib and 10nM trametinib for 1 day or for 7 days. PTEN KO cells showed dramatically increased binding of HER3 and AKT3 compared to wild type. The activation of the SOX10-FOXD3-HER3-AKT axis in PTEN KO cells could be targeted with the ERBB/HER inhibitor neratinib.
Project description:Purpose: We here applied single-cell RNA sequencing of circulating MM cells from primary MM patients to perform transcriptional profiling of myeloma cells and study emerging resistance mechanisms in real-time. Methods: A total of 1509 single CD138+/CD38+ myeloma and normal plasma cells from three patients and one normal donor were examined by full-length single-cell RNA sequencing. Results: Quality filtering resulted in the retention of 1153 cells with an average of 4836 genes detected per cell. Rapid transcriptional adaptation was observed in the presence of BRAF/MEK inhibitor treatment. Conclusions: Inhibition of the BRAF/MEK pathway in myeloma patients induces cellular adaptation accompanied by metabolic resistance and preferential transcriptional activation of OxPhos.
Project description:The first clinical trial testing the combination of targeted therapy with a BRAF inhibitor vemurafenib and immunotherapy with a CTLA-4 antibody ipilimumab was terminated early due to significant liver toxicities, possibly due to paradoxical activation of the MAPK pathway by BRAF inhibitors in tumors with wild type BRAF. MEK inhibitors can potentiate the MAPK inhibition in tumor, while potentially alleviating the unwanted paradoxical MAPK activation. With a mouse model of syngeneic BRAFV600E driven melanoma (SM1), we tested whether the addition of the MEK inhibitor trametinib would enhance the immunosensitization effects of the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression. Bioluminescent imaging and tumor infiltrating lymphocyte (TIL) phenotyping showed increased effector infiltration to tumors with dabrafenib, trametinib or dabrafenib plus trametinib with pmel-1 ACT combination. Intracellular IFN gamma staining of the TILs and in vivo cytotoxicity studies showed trametinib was not detrimental to the effector functions in vivo. Dabrafenib increased tumor associated macrophages and T regulatory cells (Tregs) in the tumors, which can be overcome by addition of trametinib. Microarray analysis revealed increased melanoma antigen, MHC expression, and global immune-related gene upregulation with the triple combination therapy. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen specific ACT, we tested the triple combination of dabrafenib, trametinib with anti-PD1 therapy, and observed superior anti-tumor effect to SM1 tumors. Our findings support the testing of these combinations in patients with BRAFV600E mutant metastatic melanoma. SM1 tumors were implanted into C57BL/6 mice. Mice were treated by ACT of pmel-1 splenocytes or C57BL/6 splenocytes as control. Pmel-1 treated mice were additionally treated with either vehicle, dabrafenib, trametinib, or combination of both drugs and control mice were treated with vehicle or combination of both drugs.
Project description:Rapid resistance to BRAF inhibitors in BRAFV600-mutant metastatic melanoma has produced an urgent need for new treatment options. BRAF inhibitor resistance commonly involves reactivation of mitogen-activated protein kinase (MAPK) signaling and yet inhibition of downstream kinases has not circumvented resistance, partly because MAPK is regulated via a complex network of feedback mechanisms that influence pathway rebound. To examine the transcriptome responses of melanoma cells to MAPK inhibition, a panel of 11 BRAFV600-mutant melanoma cell lines were treated with control (DMSO), 100nM dabrafenib alone (i.e BRAF inhibitor monotherapy) or 100nM dabrafenib + 10nM trametinib (i.e combination BRAF + MEK inhibition) for 24h.
Project description:The first clinical trial testing the combination of targeted therapy with a BRAF inhibitor vemurafenib and immunotherapy with a CTLA-4 antibody ipilimumab was terminated early due to significant liver toxicities, possibly due to paradoxical activation of the MAPK pathway by BRAF inhibitors in tumors with wild type BRAF. MEK inhibitors can potentiate the MAPK inhibition in tumor, while potentially alleviating the unwanted paradoxical MAPK activation. With a mouse model of syngeneic BRAFV600E driven melanoma (SM1), we tested whether the addition of the MEK inhibitor trametinib would enhance the immunosensitization effects of the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression. Bioluminescent imaging and tumor infiltrating lymphocyte (TIL) phenotyping showed increased effector infiltration to tumors with dabrafenib, trametinib or dabrafenib plus trametinib with pmel-1 ACT combination. Intracellular IFN gamma staining of the TILs and in vivo cytotoxicity studies showed trametinib was not detrimental to the effector functions in vivo. Dabrafenib increased tumor associated macrophages and T regulatory cells (Tregs) in the tumors, which can be overcome by addition of trametinib. Microarray analysis revealed increased melanoma antigen, MHC expression, and global immune-related gene upregulation with the triple combination therapy. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen specific ACT, we tested the triple combination of dabrafenib, trametinib with anti-PD1 therapy, and observed superior anti-tumor effect to SM1 tumors. Our findings support the testing of these combinations in patients with BRAFV600E mutant metastatic melanoma.
Project description:To explore the efficacy and safety of Cetuximab in combination with dabrafenib and Tislelizumab in BRAF mutated treatment of advanced colorectal cancer
Project description:Inhibitors of the MAPKs, BRAF and MEK, induce tumor regression in the majority of patients with BRAF-mutant metastatic melanoma. The clinical benefit of MAPK inhibitors is restricted by the development of acquired resistance with half of those who benefit having progressed by 6-7 months and long-term responders uncommon. There remains no agreed treatment strategy on disease progression in these patients. Without published evidence, fears of accelerated disease progression on inhibitor withdrawal have led to the continuation of drugs beyond formal disease progression. We now demonstrate that treatment with MAPK inhibitors beyond disease progression can provide significant clinical benefit, and the withdrawal of these inhibitors led to a marked increase in the rate of disease progression in two patients. We also show that MAPK inhibitors retain partial activity in acquired resistant melanoma by examining drug-resistant clones generated to dabrafenib, trametinib or the combination of these drugs. All resistant sublines displayed a markedly slower rate of proliferation when exposed to MAPK inhibitors, and this coincided with a reduction in MAPK signalling, decrease in BrdU incorporation and S-phase inhibition. This cytostatic effect was also associated diminished levels of cyclin D1 and p-pRb.. Two short-term melanoma cultures generated from resistant tumour biopsies also responded to MAPK inhibition with comparable inhibitory changes in proliferation and MAPK signalling. These data provide a rationale for the continuation of BRAF and MEK inhibitors after disease progression and support the development of clinical trials to examine this strategy. Total RNA obtained from melanooma cell lines treated for 24h with dabrafenib, trametinib or combination of dabrafenib and trametinib
Project description:This was a Phase II, open-label, non-randomized, multi-center study of oral dabrafenib in combination with oral trametinib in subjects with rare cancers harboring the BRAF V600E mutation including anaplastic thyroid cancer (ATC), biliary tract cancer (BTC), gastrointestinal stromal tumor (GIST), low grade (WHO G1/G2) glioma (LGG), high grade (WHO G3/G4) glioma (HGG), non-seminomatous germ cell tumors (NSGCT) / non-germinomatous germ cell tumors (NGGCT), adenocarcinoma of the small intestine (ASI), hairy cell leukemia (HCL) and multiple myeloma (MM).