GwEEP - A comprehensive approach for the profiling of DNA modifying enzymes
Ontology highlight
ABSTRACT: A precise understanding of DNA methylation dynamics on a genome wide scale is of great importance for the comprehensive investigation of a variety of biological processes such as reprogramming of somatic cells to iPSCs, cell differentiation and also cancer development. To date, a complex integration of multiple and distinct genome wide data sets is required to derive the global activity of DNA modifying enzymes. We present GwEEP - Genome-wide Epigenetic Efficiency Profiling as a versatile approach to infer dynamic efficiency changes of DNA modifying enzymes at base pair resolution on a genome wide scale. GwEEP relies on genome wide oxidative Hairpin Bisulfite sequencing (HPoxBS) data sets, which are translated by a sophisticated hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP in its present form predicts de novo and maintenance methylation efficiencies of Dnmts, as well as the hydroxylation efficiency of Tets but its purposefully flexible design allows to capture further oxidation processes such as formylation and carboxylation given available data in the future. Applied to a well characterized ES cell model, GwEEP precisely predicts the complex epigenetic changes following a Serum-to-2i shift i.e., (i) instant reduction in maintenance efficiency (ii) gradually decreasing de novo methylation efficiency and (iii) increasing Tet efficiencies. In addition, a complementary analysis of Tet triple knock-out ES cells confirms the previous hypothesized mutual interference of Dnmts and Tets. GwEEP is applicable to a wide range of biological samples including cell lines, but also tissues and primary cell types.
ORGANISM(S): Mus musculus
PROVIDER: GSE169070 | GEO | 2023/03/01
REPOSITORIES: GEO
ACCESS DATA