Genomics

Dataset Information

0

Spo11 generates gaps through concerted cuts at sites of topological stress [Top2]


ABSTRACT: Meiotic recombination is essential for proper meiotic chromosome segregation and fertility, and is initiated by programmed DNA double-strand breaks (DSBs) introduced by Spo11, a eukaryotic homolog of archaeal topoisomerase VIA. Here we report the discovery of hitherto uncharacterized Spo11-induced lesions, small gaps from 34 bp to several hundred bp, which are generated by coordinated pairs of DSBs (double DSBs or dDSBs). Isolation and genome-wide mapping of the resulting fragments with single base pair precision reveals enrichment at DSB hotspots but also a widely dispersed distribution covering the entire genome. We show that Spo11 prefers to cut at a sequence motif which promotes DNA bending, indicating that bendability of DNA contributes to cleavage site choice. Moreover, fragment lengths display a ~ (10.4n+3) bp periodicity, implying that Spo11 favours cleavage on the same face of underwound DNA. Consistently, dDSB signals overlap and correlate with topoisomerase II binding sites, which points to a role for topological stress and DNA crossings in break formation, and suggests a unified model for DSB and dDSB formation, in which Spo11 traps two DNA strands. Furthermore, gaps resulting from dDSBs, an estimated 20% of all initiation events, can account for full gene conversion events that are independent of both Msh2-dependent heteroduplex repair and MutLγ. Since non-homologous gap repair results in deletions, and ectopically re-integrated dDSB fragments result in insertions, dDSB formation represents a potential source of evolutionary diversity and pathogenic germ-line aberrations.

ORGANISM(S): Nakaseomyces glabratus Saccharomyces cerevisiae

PROVIDER: GSE169760 | GEO | 2021/06/09

REPOSITORIES: GEO

Similar Datasets

2021-06-09 | GSE171042 | GEO
2014-03-31 | E-GEOD-52858 | biostudies-arrayexpress
2014-03-31 | E-GEOD-52862 | biostudies-arrayexpress
2011-03-07 | E-GEOD-26449 | biostudies-arrayexpress
2023-10-18 | GSE245327 | GEO
2014-03-31 | GSE52862 | GEO
2014-03-31 | GSE52858 | GEO
2013-06-01 | E-GEOD-43384 | biostudies-arrayexpress
2018-11-25 | GSE122882 | GEO
2024-04-02 | GSE262706 | GEO