Gene expression profiling of 35 AML FAB-M0 samples
Ontology highlight
ABSTRACT: Ficolled AML-M0 sample gene expression profiles on Affymetrix HGU133Plus2.0 GeneChips. Acute myeloid leukemia (AML) classified as FAB-M0 is defined as a subtype with minimally differentiated morphology. Here we investigated by gene expression (GEP) profiling whether AML-M0 cases should be considered as one or more unique molecular subgroups that discriminates them from other AML patients. By applying GEP and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature. Hematological transcription regulators such as CEBPA, CEBPD, PU.1 and ETV6 and the differentiation associated gene MPO appeared strongly down-regulated, in line with the very primitive state of this type of leukemia. Moreover, AML M0 cases appeared to have a strong positive correlation with a previously defined immature AML subgroup with adverse prognosis. AML-M0 leukemias frequently carry loss-of-function RUNX-1 mutation and unsupervised analyses revealed a striking distinction between cases with and without mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B-cell-related genes, e.g. members of the B-cell receptor complex, transcriptions regulators RUNX3, ETS2, IRF8 or PRDM1 and major histocompatibility complex class II genes. Importantly, expression of one single gene, i.e. BLNK, enabled prediction of RUNX1 mutations in AML-M0 with high accuracy. We propose that RUNX1 mutations in this subgroup of AML cause lineage infidelity, leading to aberrant co-expression of myeloid and B-lymphoid genes in the same cells.
ORGANISM(S): Homo sapiens
PROVIDER: GSE17061 | GEO | 2009/07/14
SECONDARY ACCESSION(S): PRJNA119839
REPOSITORIES: GEO
ACCESS DATA