SIRT6-CBP dependent Nuclear Tau Accumulation and its Role in Protein Synthesis.
Ontology highlight
ABSTRACT: Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegenerative patients. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage result in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression affecting protein translation, synthesis and energy production. Concomitantly, AD patients showed increased Nucleolin and a decrease in SIRT6 levels. AD patients present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD patients is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation and nucleolar dysfunction.
ORGANISM(S): Homo sapiens
PROVIDER: GSE171342 | GEO | 2021/04/02
REPOSITORIES: GEO
ACCESS DATA