Stress ball morphogenesis: how the lizard builds its lung
Ontology highlight
ABSTRACT: Lung function is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. By combining next-generation sequencing with timelapse imaging, we reveal that the hexagonal smooth muscle geometry self-assembles in response to circumferential and axial stresses downstream of pressure. A quantitative computational model predicts the pressure-driven changes in epithelial topology, which we replicate using a 3D-printed engineered tissue model of optogenetically-driven smooth muscle contraction. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.
ORGANISM(S): Anolis sagrei
PROVIDER: GSE171416 | GEO | 2021/04/03
REPOSITORIES: GEO
ACCESS DATA