Maternal Piwi regulates primordial germ cells to ensure the fertility of female progeny in Drosophila
Ontology highlight
ABSTRACT: PIWI proteins and their associated small noncoding piRNAs, which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the early embryo in Drosophila. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal Piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the adult ovaries of progeny. Furthermore, the maternal piRNA pool is diminished, reducing the capacity of the PIWI/piRNA complex to target some zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and gene expression in the adult ovary showed that the germline of female progeny is partially masculinized upon maternal Piwi knockdown . This reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Project description:In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific protein essential for germline development. Vret is required for piRNA-based transposon regulation in both germline and somatic gonadal tissues. We show that Vret, which contains Tudor domains, associates physically with Piwi and Aubergine (Aub), stabilizing these proteins via a gonad-specific mechanism, absent in other fly tissues. In the absence of vret, Piwi-bound piRNAs are lost without changes in piRNA precursor transcript production, supporting a role for Vret in primary piRNA biogenesis. In the germline, piRNAs can engage in an Aub/Argonaute 3 (AGO3)-dependent amplification in the absence of Vret, suggesting that Vret function can distinguish between primary piRNAs loaded into Piwi/Aub complexes and piRNAs engaged in the amplification cycle. We propose that Vret acts at an early step in primary piRNA processing where it plays an essential role in transposon regulation. These studies show that vreteno (vret) has a role in germline development and primary piRNA regulation in Drosophila. Transposable element expression profiles from Drosophila ovaries mutant for vreteno, piwi and aubergine were compared using genome-wide mRNA expression profiling by Affymetrix GeneChip arrays (Drosophila 2.0). Key targets were validated by qPCR experiments.
Project description:In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific protein essential for germline development. Vret is required for piRNA-based transposon regulation in both germline and somatic gonadal tissues. We show that Vret, which contains Tudor domains, associates physically with Piwi and Aubergine (Aub), stabilizing these proteins via a gonad-specific mechanism, absent in other fly tissues. In the absence of vret, Piwi-bound piRNAs are lost without changes in piRNA precursor transcript production, supporting a role for Vret in primary piRNA biogenesis. In the germline, piRNAs can engage in an Aub/Argonaute 3 (AGO3)-dependent amplification in the absence of Vret, suggesting that Vret function can distinguish between primary piRNAs loaded into Piwi/Aub complexes and piRNAs engaged in the amplification cycle. We propose that Vret acts at an early step in primary piRNA processing where it plays an essential role in transposon regulation. These studies show that vreteno (vret) has a role in germline development and primary piRNA regulation in Drosophila.
Project description:Purpose: Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through piRNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear if it plays any roles in early GSC lineage development. Results: The study reveals a novel function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors.
Project description:PIWI proteins and their bound piRNAs form the core of a gonad specific small RNA silencing pathway in animals that protects the genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology, where TUDOR domains of various proteins recognize and bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analyzed the Drosophila TUDOR protein family and identified three previously not characterized TUDOR domain-containing genes (CG4771, CG14303 and CG11133) as essential piRNA pathway members. We characterized CG4771 (Avocado) in detail and demonstrate a critical role for this protein during primary piRNA biogenesis in somatic and germline cells of the ovary. Avocado physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Avocado also interacts with the Tdrd12 orthologs CG11133 and CG31755, which are essential for primary piRNA biogenesis in the germline and probably functionally replace the related and soma specific factor Yb. small RNA libraries were prepared from total RNA isolation of 8 different genotypes
Project description:PIWI proteins and their bound piRNAs form the core of a gonad specific small RNA silencing pathway in animals that protects the genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology, where TUDOR domains of various proteins recognize and bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analyzed the Drosophila TUDOR protein family and identified three previously not characterized TUDOR domain-containing genes (CG4771, CG14303 and CG11133) as essential piRNA pathway members. We characterized CG4771 (Avocado) in detail and demonstrate a critical role for this protein during primary piRNA biogenesis in somatic and germline cells of the ovary. Avocado physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Avocado also interacts with the Tdrd12 orthologs CG11133 and CG31755, which are essential for primary piRNA biogenesis in the germline and probably functionally replace the related and soma specific factor Yb.
Project description:PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the inter-dependencies between these piRNA biogenesis pathways in the developing Drosophila ovary. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and that defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear, transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. To understand the hierarchical order of primary versus secondary piRNA biogenesis in Drosophila ovaries, we sequenced piRNAs bound to total-Piwi, germline-Piwi, Aubergine and Argonaute3 from ovaries of germline specific knockdowns of control, piwi, aub, ago3 single knockdowns and aub/ago3 double knockdowns. To determine changes in Transposable Element (TE) transcription or TE RNA steady state in perturbed piRNA pathway conditions, we performed Pol2-ChIP-sequencing and polyA bound RNA-sequencing from ovaries of multiple germline knockdown genotypes. We also sequenced genomic DNA from ovaries of control knockdowns to experimentally estimate the TE copy number in our genetic background. Finally, we used CAP-seq from germline specific Piwi depletions to identify the Transcriptional Start Sites (TSS) in TEs in a deregulated background. Replicates are labeled with R1, R2, R3, R4 where indicated.
Project description:Germ cells of most animals critically depend on piRNAs and Piwi proteins. Surprisingly, piRNAs in mouse oocytes are relatively rare and dispensable. We present compelling evidence for strong Piwi-piRNA expression in oocytes of other mammals. Human fetal oocytes express PIWIL2 and transposon-enriched piRNAs. Oocytes in adult human ovary express PIWIL1 and PIWIL2, while those in bovine ovary just express PIWIL1. In human, macaque and bovine ovaries we find piRNAs that resemble testis-borne pachytene piRNAs. Isolated bovine follicular oocytes were shown to contain abundant, relatively short piRNAs that preferentially target transposable elements. Using label-free quantitative proteome analysis we show that these maturing oocytes strongly and specifically express the thus-far uncharacterized PIWIL3 protein, alongside other known piRNA-pathway components. In bovine early embryos these piRNAs are still abundant, revealing a potential impact of piRNAs on mammalian embryogenesis. Our results reveal unexpected, highly dynamic piRNA pathways in mammalian oocytes and early embryos. Analyses of multiple small RNA libraries obtained from fetal/adult oocytes, cumulus cells, ovary, testis and 2-4 cell stage ivf embryos of multiple mammalian species.
Project description:This study examines the conservation of Piwi-interacting RNA (piRNA) clusters that come from protein coding gene transcripts. By sequencing small RNA libraries from gonad tissues of Drosophilids and Glires we discover a diverse set of genic piRNA clusters conserved across animals. This dataset reveals new expression patterns for genic piRNA clusters and examines whether changing piRNA expression patterns correlates with sequence changes in piRNA cluster genomic sequence across a variety of animal species. We dissected gonad tissues consisting of ovaries from wildtype adult Drosophilids (D.melanogaster, D.erecta, D.yakuba, D.virilis) and testes from wildtype pre-pubsecent and adult mouse and rats. Adult testes from rabbits were purchased from Pel-Freez Biologicals. Total or immunopreciptated RNAs were extracted from the pulvirized gonad tissues of Drosophilids and Glires. Small RNAs were purified from these samples, converted into cDNA libraries, and sequenced on an Illumina HiSeq2000.
Project description:In the Metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that Drosophila Piwi is recruited to chromatin, co-localizing with RNA polymerase II on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. De-repression of transposons upon Piwi depletion correlates with increased occupancy of RNA polymerase II on their promoters. Expression of piRNAs that target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks and HP1 on the reporter locus. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found. Examination of mRNA levels, Pol II occupancy, and chromatin repressive state in D. melanogaster ovaries upon Piwi knockdown and Piwi mutation. This records present the sequencing data related to Piwi knockdown study portion.
Project description:The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different transposons types. Examination of small RNA levels from nos-GAL4 or tj-GAL4 driven UAS-dsRNA knockdowns of control genes and piRNA pathway components in ovaries of Drosophila melanogaster by deep sequencing (using Illumina HiSeq2000).