PLZF acetylation levels regulate NKT cell differentiation
Ontology highlight
ABSTRACT: The transcription factor PLZF (promyelocytic leukemia zinc finger) is encoded by the BTB 42 domain-containing 16 (Zbtb16) gene. Its repressor function regulates specific transcriptional 43 programs. During the development of invariant natural killer T (NKT) cells, PLZF is 44 expressed and directs their effector program but the detailed mechanisms underlying PLZF 45 regulation of multi-stage NKT cell developmental program are not well understood. This 46 study investigated the role of acetylation-induced PLZF activation on NKT cell development 47 by analyzing mice expressing a mutant form of PLZF mimicking constitutive acetylation (PLZFON mice). NKT populations in PLZFON 48 mice were reduced in proportion and numbers 49 of cells, and the cells present were blocked at the transition from developmental stage 1 to stage 2. NKT cell subset differentiation was also altered, with T-bet+ NKT1 and RORJt + 50 NKT17 subsets dramatically reduced, and the emergence of a T-bet - RORJt - 51 NKT cell subset 52 with features of cells in early developmental stages rather than mature NKT2 cells. Analysis 53 of DNA methylation patterns indicated that activated PLZF establishes a unique DNA 54 methylation signature to regulate NKT cells’ entry into the early stages of development, while 55 repressing maturation. In wild-type NKT cells, deacetylation of PLZF alleviates this 56 repression and allows subsequent NKT cell differentiation. Interestingly, development of 57 other innate lymphoid and myeloid cells, that are dependent on PLZF for their generation, is not altered in PLZFON 58 mice highlighting lineage specific regulation. Overall, we propose that 59 specific epigenetic control of PLZF through acetylation levels is required to regulate normal 60 NKT cell differentiation.
ORGANISM(S): Mus musculus
PROVIDER: GSE171984 | GEO | 2021/04/21
REPOSITORIES: GEO
ACCESS DATA