Affy_popsec_nancy_leaves2007_poplar -Molecular bases of acclimatation and adaptation to water deficit in poplar
Ontology highlight
ABSTRACT: affy_popsec_nancy_leaves_poplar - affy_popsec_nancy_leaves2007_poplar - This project aims to identify genes of interest for water deficit acclimation and/or adaptation in a tree species: poplar. We look for genes and gene expression networks related to drought stress. We intend to analyse the transcriptome in mature leaves, in two genotypes, Carpaccio and Soligo, at various stages and intensities of stress. During water deficit, leaves underwent many processes aiming to maintain cells integrity such as water status adjustment through osmoregulation or cell detoxication. These analyses intend to identify genes of interest involved in homeostasis maintenance. The comparison between medium and severe stress intensities and between early and long term stresses will power the selection of genes of interest. The co-analysis of two genotypes of contrasted tolerance to water deficit should help to discriminate genes presenting a potential adaptative character from genes responding passively to the constraint-In a first experiment, two poplar clones, Soligo (S) and Carpacio (C) were submitted to 4 treatments: control, mild water deficit, moderate water deficit (12-day long for both) and early-drought stress (about 36-h long). Growth and physiology was characterised on a batch of plants and samples collected on another batch of plants. In a second experiment, two poplar clones, Soligo (S) and Carpacio (C) were submitted to 2 treatments: control and moderate water deficit. Mature leaves were collected and total RNAs were extracted from each tree individually. Two pools of 3 (or 2) individuals were made using equimolar ratio. A pool is considered as one biological replicate and corresponds to one Affimetrix slide. Keywords: treated vs untreated comparison
ORGANISM(S): Populus sp. Populus x canadensis
PROVIDER: GSE17230 | GEO | 2011/01/15
SECONDARY ACCESSION(S): PRJNA119199
REPOSITORIES: GEO
ACCESS DATA