Exosomes from antler stem cells alleviates MSC senescence and osteoarthritis
Ontology highlight
ABSTRACT: The therapeutic functions of stem cells were mainly depending on paracrine effects rather than their own proliferation and differentiation on site. In advantage of easy to collected from conditioned medium, have contents of cytokines, growth factors, signaling lipids, mRNAs, and regulatory miRNAs, exosomes from stem cells were considered to be a promising material for stem cell-based cell-free therapies. In traditional Chinese medicine, antler extracts have been used to alleviates aging and aging related diseases. We have demonstrated that exosomes from antler stem cells (ASCs), the source of the annual full regeneration of deer antler, could alleviate cellular senescence and aging related diseases. With exosomes treatment, the senescent phenotype of primary MSCs and hMSCs at late passage were significantly mitigated. When injected into articular cavity, exosomes from ASCs markedly promote joint function recovery and bone and cartilage regeneration. By LC-MS/MS assay, we found that exosomes from ASCs contain various proteins which in the regulation of biological processes including cell proliferation and migration, immunoregulation, wound healing and angiogenesis. With the advantages of abundant sources, low risk of tumorigenicity and immunogenicity, exosomes from ASCs may consider as a promising bio-material for cell-free therapies in the future.
Project description:we used proteomic technology to disclose the difference of antler regeneration between red deer and sika deer. Through functional analysis, we obtained differentially expressed proteins and the pathway involved in antler regeneration between two groups
Project description:The aim of the study is to characterize the gene expression of the growing antlers during their process of regeneration and fast growth Experiment Overall Design: Gene profiles of RNA samples from antler tip, base (pedicle) and frontal bone. Samples were harvested during spring, at the period of maximum antler growth (60 days after casting the previous antlers). And additional sample (DEER4) was harvested at the end of the growing season (90 days after the casting).
Project description:As the only known mammalian organ that can fully and annually regenerate, deer antler has significant advantages over lower-order animal models when investigating the control of stem cell-based organ regeneration. Antler regeneration is known to be initiated and maintained by neural crest-derived stem cells in different states of activation. Antler stem cells can therefore be used as a model system to study the proteins and pathways involved in the maintenance of a stem cell niche and their activation and differentiation during organ formation. In the current study, the MSC markers CD73, CD90 and CD105 were examined within the antler tip. Label-free quantification was performed to investigate the protein profiles of antler stem cells under different stages of activation and included: dormant pedicle periosteum (DPP), antler growth center (GC), post-active stem cells from mid-beam antler periosteum (MAP), and deer facial periosteum (FP) as a control (n = 3 per group). PEAKS and IPA software were used to analyze the proteomic data. Our research confirmed the central role of stem cell activation in the development of this mammalian organ by localizing the MSC markers within the antler growth center. Label-free quantification revealed that the greatest number of unique proteins (eighty-seven) was found in the growth center tissue. There were only 12 proteins found with expression levels that significantly differed between DPP and FP. Protein profiles of these two groups indicated that antler stem cells may use similar mechanisms to maintain dormancy within a stem cell niche. The number of significantly regulated proteins between DPP, MAP and GC was 153. Among them, the majority were upregulated in the growth center. Activation of antler stem cells was associated with a number of biological processes and signaling pathways such as Hippo and canonical Wnt signaling. This work identifies the key canonical pathways, molecular/cellular functions and upstream regulators involved in mammal organ regeneration.
Project description:Purpose: The goal of this study is to compare (RNA-seq) transcriptomes of in vitro cultured human bone marrow-derived mesenchymal stem cells (hMSCs) and fallow deer antler-derived skeletal progenitors (FD RM Cells) under multiple conditions to identify candidate proliferation and mineralization genes responsible for fast antler regeneration Methods: hMSCs and FD RM Cells were cultured in vitro under 1) serum-free (0% serum) or serum (10% serum) conditions for 2.5 days or 2) Control (0 ng/mL BMP-2 and 0 nM dexamethasone) and osteogenic (100 ng/mL BMP-2 and 100 nM dexamethasone) media for 24 days. mRNA profiles were generated by deep sequencing, in duplicate, using Illumina HiSeq 2000. The sequence reads were analyzed at the transcript isoform level STARS followed by Cufflinks. Validation for genes of interest was performed using immunofluorescence staining. Results: Comparison of human and fallow deer skeletal progenitor datasets yielded proliferation and mineralization gene candidates Conclusions: Our study represents the first detailed analysis of human and fallow deer transcriptomes of skeletal progenitor cells under proliferation and mineralization conditions, with biologic replicates, generated by RNA-seq technology. Our in vitro comparative approach circumvent some of the logistical and technical challenges in identifying candidate proliferation and mineralization genes responsible for rapid deer antler regeneration. We conclude that in vitro comparison of RNA-seq based transcriptomes identified candidate proliferaiton and mineralization genes to advance bone biology and holds promise to rapidly regenerate large bone volumes for regenerative medicine. The comparative approach utilized here can be adapted for almost any tissue to study a specific phenomenon of interest.
Project description:As the only regenerative organ of mammals, antler could grow rapidly without carcinogenesis. To understand the molecular mechanisms of the growth of sika deer antler, we used de novo RNA-seq analyses to determine the differential expression of unigenes and miRNAs from antler at 15, 60, 90, and 110-day. A total of 55004 unigenes, 208 known miRNAs and 38 novel miRNAs were identified. 10182 unigenes and 35 miRNAs were differentially expressed between 60-day and 15-day antler, 13258 unigenes and 53 miRNAs were differentially expressed between 90-day and 60-day antler, and 10740 unigenes and 27 miRNAs were differentially expressed between 110-day and 90-day antler. GO and KEGG analyses showed that DE unigenes and miRNA were mainly related to chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely associate with antler growth. We also constructed mRNA-mRNA and miRNA-mRNA interaction networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler. The results showed that mRNA (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p etc.) may play important roles in chondrogenesis and osteogenesis of antler, and mRNA (TP53, Tpm3 and ATP1A1 etc.) and miRNAs (miR-106a, miR-145, miR-1260b and miR-2898 etc.) may have key roles in inhibiting the carcinogenesis of antlers. In this study, we identified miRNAs and unigenes related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler. This will provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis, and also provide valuable information for cartilage- and bone-related disease treatment, cancer treatment.
Project description:As the only regenerative organ of mammals, antler could grow rapidly without carcinogenesis. To understand the molecular mechanisms of the growth of sika deer antler, we used de novo RNA-seq analyses to determine the differential expression of unigenes and miRNAs from antler at 15, 60, 90, and 110-day. A total of 55004 unigenes, 208 known miRNAs and 38 novel miRNAs were identified. 10182 unigenes and 35 miRNAs were differentially expressed between 60-day and 15-day antler, 13258 unigenes and 53 miRNAs were differentially expressed between 90-day and 60-day antler, and 10740 unigenes and 27 miRNAs were differentially expressed between 110-day and 90-day antler. GO and KEGG analyses showed that DE unigenes and miRNA were mainly related to chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely associate with antler growth. We also constructed mRNA-mRNA and miRNA-mRNA interaction networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler. The results showed that mRNA (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p etc.) may play important roles in chondrogenesis and osteogenesis of antler, and mRNA (TP53, Tpm3 and ATP1A1 etc.) and miRNAs (miR-106a, miR-145, miR-1260b and miR-2898 etc.) may have key roles in inhibiting the carcinogenesis of antlers. In this study, we identified miRNAs and unigenes related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler. This will provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis, and also provide valuable information for cartilage- and bone-related disease treatment, cancer treatment.
Project description:To obtain an overview of the antler tip gene expression profile during rapid growth period, a cDNA sample was prepared from antler tip and sequenced using the Illumina sequencing platform.
Project description:Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. microRNAs (miRNAs) have been shown to regulate the differentiation of various mesenchymal stem cells (MSCs) and play an important role in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation. In this study, we demonstrated that the RMCs showed typical MSCs differentiation potentials. During chondrogenic differentiation, we obtained the expression profile of miRNAs, among which miR-145 was the most prominent candidate as key microRNA involved in the balance of chondral and endochondral differentiation. Knockdown of miR-145 promoted chondrogenesis and inhibits hypertrophy differentiation in RMCs. Mechanically, by online databases prediction combined with dual-luciferase reporter assay, SOX9 was suggested as a target of miR-145. Further validation experiments confirmed that knockdown of miR-145 contributed to the balance between endochondral versus chondral differentiation of RMCs by targeting SOX9. Additionally, RMCs transfected with the miR-145 knockdown mediated of lentiviral vector successfully promoted cartilage regeneration in vivo. In summary, our study suggested that the reciprocal negative feedback between SOX9 and miR-145 was essential for balancing between endochondral versus chondral differentiation of RMCs. Our study suggested that modification of RMCs using miRNAs transduction might be an effective treatment for cartilage defects.
Project description:Deer antlers are amazing natural appendages that grow faster than any other known mammalian bone. Antler growth occurs at the tip and is initially cartilage, which is later replaced by bone tissue. However, little is known regarding the precise role of cooperation between cell lineages and functional genes in regulating antler growth, and molecular mechanisms responsible for rapid growth remain elusive. In this study, we use an RNA-Seq approach to identify miRNA expression patterns during antler growth.