Transcriptomics

Dataset Information

0

CDK7 controls E2F- and MYC-driven proliferative and metabolic vulnerabilities in multiple myeloma


ABSTRACT: Therapeutic targeting of CDK7 has proven beneficial in pre-clinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in multiple myeloma (MM) patient cells; and its selective targeting counteracts E2F activity via perturbation of the CDKs/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression increasing survival in several MM mouse models including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.

ORGANISM(S): Homo sapiens

PROVIDER: GSE172441 | GEO | 2023/02/01

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2022-04-01 | GSE172444 | GEO
2022-04-01 | GSE172443 | GEO
2022-04-01 | GSE172442 | GEO
2023-09-01 | GSE229967 | GEO
2018-06-27 | GSE116282 | GEO
2019-12-27 | GSE137636 | GEO
2022-03-26 | GSE198248 | GEO
2014-06-22 | E-GEOD-50624 | biostudies-arrayexpress
2013-12-23 | E-GEOD-50622 | biostudies-arrayexpress
2019-12-27 | GSE129298 | GEO