Transcriptomics

Dataset Information

0

Longitudinal Transcriptomic response to SARS-CoV-2 infection


ABSTRACT: Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-PCR cycle threshold (Ct) of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.

ORGANISM(S): Homo sapiens

PROVIDER: GSE173310 | GEO | 2021/07/30

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2022-06-03 | E-MTAB-11261 | biostudies-arrayexpress
2023-09-28 | GSE234486 | GEO
2022-06-01 | E-MTAB-11237 | biostudies-arrayexpress
2022-06-01 | E-MTAB-11232 | biostudies-arrayexpress
2022-02-08 | E-MTAB-11233 | biostudies-arrayexpress
2022-06-01 | E-MTAB-11234 | biostudies-arrayexpress
2022-06-01 | E-MTAB-11235 | biostudies-arrayexpress
2022-06-01 | E-MTAB-11236 | biostudies-arrayexpress
2021-12-31 | GSE184932 | GEO
2024-07-31 | GSE268640 | GEO