FVE promotes RNA-directed DNA methylation by facilitating the association of RNA polymerase V with chromatin [H3K27me3 ChIP-Seq].
Ontology highlight
ABSTRACT: DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:RNA-directed DNA methylation (RdDM) in Arabidopsis thaliana depends on the synthesis of non-coding RNAs by nuclear RNA polymerase E (NRPE or Pol V) 1-3, but the mechanism by which Pol V is targeted is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires the SU(VAR)3-9 homologs, SUVH2 and SUVH9. These proteins resemble histone methyltransferases, however a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-Adenosyl methionine (SAM) binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SET- and RING-ASSOCIATED (SRA) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of the DNA METHYLTRANSFERASE 1, MET1, causes losses of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. By tethering SUVH2 with a zinc finger to an unmethylated epiallele of the homeodomain transcription factor FWA, we demonstrate that SUVH2 is sufficient to both recruit Pol V and establish DNA methylation and gene silencing. Our results suggest that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of the plant genome for epigenetic silencing. For wild type plants (ecotype Columbia) and suvh2 suvh9 double mutants whole-genome small RNA (sRNA-seq) and bisulfite sequencing (BS-seq) was performed. For the small RNA sequencing nrpd1 and nrpe1 mutant plants were sequenced in parallel as controls. For the bisulfite sequencing data, the wildtype data and that of the suvh2 and suvh9 single mutants was previously published and is thus not submitted here. In addition, two replicates of whole genome chromatin immunoprecipitation (ChIP-seq) was performed on wild type (ecotype Columbia) plants as a negative control with experimentals consiting of wildtype and suvh2 suvh9 mutant plants carrying a C-terminally epitope tagged (3XFLAG) NRPE1. Whole genome ChIP seq was also performed using a gifted endogenous NRPE1 antibody in a wildtype and met1 mutant background. Whole-genome bisulfite sequencing was also performed on fwa-4 epiallele plants transformed with the wild-type SUVH2 protein-coding construct containing a tethering zinc finger targeted to repeats at the fwa gene. For these transgenic libraries a line carrying a FLAG and fwa targeting zinc-finger tagged KRYPTONITE methyltransferase was bisulfite sequenced as a control (“FLAG-ZF-KYP”).
Project description:RNA-directed DNA methylation (RdDM) in Arabidopsis thaliana depends on the synthesis of non-coding RNAs by nuclear RNA polymerase E (NRPE or Pol V) 1-3, but the mechanism by which Pol V is targeted is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires the SU(VAR)3-9 homologs, SUVH2 and SUVH9. These proteins resemble histone methyltransferases, however a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-Adenosyl methionine (SAM) binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SET- and RING-ASSOCIATED (SRA) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of the DNA METHYLTRANSFERASE 1, MET1, causes losses of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. By tethering SUVH2 with a zinc finger to an unmethylated epiallele of the homeodomain transcription factor FWA, we demonstrate that SUVH2 is sufficient to both recruit Pol V and establish DNA methylation and gene silencing. Our results suggest that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of the plant genome for epigenetic silencing.
Project description:In flowering plants, silencing of transposable elements (TEs) is achieved by the installation of DNA methylation and histone modifications. 24-nt long small-interfering RNAs (siRNAs) guide the deposition of DNA methylation through RNA-directed DNA methylation (RdDM), which can be maintained independently of siRNAs in coordination with H3K9me2. In most angiosperms, RdDM is ubiquitously expressed in vegetative and sexual reproductive tissues. Spirodela polyrhiza (Lemnaceae), represents an exception with low levels of DNA methylation, very low expression of RdDM and near absence of 24-nt siRNAs during its clonal vegetative propagation. Moreover, some components of RdDM, DNA methylation maintenance and RNA silencing are absent from the genome. By investigating the distribution of epigenetic marks on TEs, we show that Spirodela epigenome is shaped by the loss of DNA methylation and H3K9me2 as TEs decay. Nonetheless, such abundant TE remnants remain silenced and marked by H3K9me1. In contrast, scarce, relatively intact TEs display high levels of DNA methylation, H3K9me2 and siRNAs whose patterns resemble those of TEs subjected to RdDM in other angiosperms. Furthermore, despite the absence of DCL2 in duckweeds, Spirodela can produce 22-nt siRNAs, not only from TEs, but from diverse sources of double-stranded (ds)RNA. Our data suggests that RdDM might still be functional during vegetative clonal growth, albeit tissue or developmentally regulated, and highlights the use of alternative models to further understand and explore the diversity of silencing pathways in plants.
Project description:The diversity of small RNA-directed DNA methylation (RdDM) mechanisms have been underestimated due to the nearly complete transcriptional silencing of transposable elements (TEs) in the wild-type reference strains of Arabidopsis thaliana. In plants mutant for the SWI/SNF histone remodeler DDM1, TEs are globally activated due to loss of genome wide heterochromatin condensation. Transcriptionally activated TEs go through additional non-canonical forms of RdDM that are dependent on RNA Polymerase II expression. However, the global targets of the non-canonical RdDM pathway have not been explored. In an attempt to identify and contrast the targets of canonical and expression-dependent non-canonical RdDM, we performed MethylC-seq of genome-wide DNA methylation patterns from several RdDM mutants in either the TE-silent or the TE-active (ddm1) contexts. Arabidopsis wildtype and twenty RdDM pathway mutants
Project description:RNA-directed DNA methylation (RdDM) is a transcriptional silencing mechanism mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1a (TOP1a) was able to de-repress LUCL by reducing its DNA methylation and H3K9 dimethylation (H3K9me2) levels. Further studies with Arabidopsis top1a mutants showed that TOP1a promotes RdDM by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at transposable elements (TEs). 5 small RNA libraries were sequenced
Project description:The diversity of small RNA-directed DNA methylation (RdDM) mechanisms have been underestimated due to the nearly complete transcriptional silencing of transposable elements (TEs) in the wt Col ecotype of Arabidopsis thaliana. In plants mutant for the SWI/SNF2 histone remodeler DDM1, TEs are globally activated due to loss of genome wide heterochromatin condensation. Activated TEs go through additional non-canonical forms of RdDM. However, the global targets of the non-canonical RdDM pathway are unidentified. In an attempt to identify and contrast the targets of canonical and non-canonical RdDM, we sequenced small RNAs from several RdDM mutants in either the TE-silent or the TE-active (ddm1) contexts. Examination of unopened flower bud small RNAs from wild type and various single or double mutant combinations, many of which have biological replicates. Small RNA sequences from wt Col, controls and other mutants shown in the study are available at GSE41755 and GSE57191.