RNA-seq and small RNA-seq in fission yeast CPF mutants that enable small-RNA-mediated epigenetic gene silencing
Ontology highlight
ABSTRACT: Small RNAs are the common denominator of various RNA silencing pathways that regulate gene expression and protect the genome against mobile repetitive DNA sequences, retroelements, and transposons. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Different studies have shown that siRNAs become potent mediators of RNAi-mediated epigenetic gene silencing in S. pombe cells that are mutant for mlo3+, dss1+, mst2+, or genes encoding subunits of the Paf1 complex (Paf1C). In this study, we have combined chemical mutagenesis with whole-genome sequencing in a sensitized S. pombe reporter strain to obtain a more comprehensive list of putative suppressors of small-RNA-mediated epigenetic gene silencing. This revealed more than 20 novel silencing-enabling mutations in genes that are associated with RNA processing, regulation of transcription, or post-translational protein modification. Focusing on factors involved in pre-mRNA cleavage and polyadenylation, we for example show that single amino acid substitutions in Yth1, which is responsible for polyadenylation signal recognition, lead to nearly 100% effective de novo formation of silent heterochromatin. In S. pombe, small RNA-mediated silencing relies on the continuous amplification of the siRNA pool through a positive feedback loop. The deposited data shows the generation of secondary small RNAs over the reporter gene exclusively in the presence of RNAi-enabling mutations in the pre-mRNA cleavage and polyadenylation machinery. Furthermore, the RNA-seq data show that overall transcriptome levels are not markedly changing in the mutations themselves. Altogether, our work shows that epigenetic gene silencing can be enabled by the acquisition of a plethora of mutant alleles in fission yeast.
Project description:The assembly of repressive heterochromatin domains in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeat elements are transcribed has been unclear. Using fission yeast, we show that the conserved trimeric transcription factor (TF) PhpCNF-Y complex, which includes histone fold domain proteins, can infiltrate constitutive heterochromatin to transcribe repeat elements. PhpCNF-Y collaborates with a Zn-finger containing TF to bind heterochromatic repeat promoter regions with CCAAT boxes. Mutating either the TFs or the CCAAT binding site disrupts the transcription of heterochromatic repeats. Although repeat elements are transcribed from both strands, PhpCNF-Y-dependent transcripts originate from only one strand. These TF-driven transcripts contain cryptic introns that are processed via a mechanism requiring the spliceosome to generate small interfering RNAs (siRNAs) by the RNAi machinery. Our analyses show that siRNA production by this TF-mediated transcription pathway is critical for nucleation of heterochromatin at target repeat loci. This study reveals a mechanism by which heterochromatic repeats are transcribed, initiating their own silencing by triggering a primary cascade that produces siRNAs necessary for heterochromatin nucleation.
Project description:Small interfering RNAs (siRNAs) are known to be involved in both transposon silencing and centromere function, leading us to investigate the interplay between these two roles in the Schizosaccharomyces lineage. In S. pombe, the centromeric repeats produce dicer-dependent siRNAs that are required for maintenance of centromeric structure, function and transcriptional silencing via Argonaute-dependent heterochromatin formation13. However, transposons are silenced in S. pombe by RNAi-independent mechanisms and do not produce abundant siRNAs. To investigate whether centromere-directed siRNA production is conserved within the transposon-rich centromeres of S. japonicus, we isolated and sequenced small RNAs from log-phase S. japonicus cultures. The small RNAs have a modal size of 23 nucleotides and 94% map to transposons, both telomeric and centromeric. Isolation and computational analysis of small RNAs from wild-type S. japonicus
Project description:RNAi is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing widespread occurrence of siRNA clusters and corresponding increase in heterochromatin modifications across large domains. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Remarkably, siRNA production and heterochromatin modifications at genes are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover interplay between RNAi and the exosome that is conserved in higher eukaryotes, and show that differentiation signals modulate RNAi silencing to regulate developmental genes. We sequenced 7 samples from Schizosaccharomyces pombe and 2 samples from Drosophila melanogaster.
Project description:Small interfering RNAs (siRNAs) are known to be involved in both transposon silencing and centromere function, leading us to investigate the interplay between these two roles in the Schizosaccharomyces lineage. In S. pombe, the centromeric repeats produce dicer-dependent siRNAs that are required for maintenance of centromeric structure, function and transcriptional silencing via Argonaute-dependent heterochromatin formation13. However, transposons are silenced in S. pombe by RNAi-independent mechanisms and do not produce abundant siRNAs. To investigate whether centromere-directed siRNA production is conserved within the transposon-rich centromeres of S. japonicus, we isolated and sequenced small RNAs from log-phase S. japonicus cultures. The small RNAs have a modal size of 23 nucleotides and 94% map to transposons, both telomeric and centromeric.
Project description:Nuclear Argonaute proteins, guided by their bound small RNAs, orchestrate heterochromatin formation at transposon insertions and repetitive genomic loci. The molecular mechanisms that, besides recruiting heterochromatin effector proteins, are required for this silencing process are poorly understood. Here, we show that the SFiNX complex, the central silencing mediator downstream of nuclear Piwi-piRNA complexes in Drosophila, enables co-transcriptional silencing via the formation of molecular condensates. Condensate formation is stimulated by nucleic acid binding and requires SFiNX to form a homodimer. The dynein light chain dLC8, a highly conserved dimerization hub protein, mediates homo-dimerization of SFiNX. Point mutations preventing dLC8-mediated SFiNX dimerization result in transposon de-repression and sterility. dLC8’s function can be bypassed with a heterologous dimerization domain, suggesting that dimerization is a constitutive rather than a regulated feature of SFiNX. We propose that nucleic-acid stimulated condensate formation enables co-transcriptional silencing through the retention of the target RNA at chromatin, thereby allowing effector proteins to establish heterochromatin at the target locus.
Project description:RNAi is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing widespread occurrence of siRNA clusters and corresponding increase in heterochromatin modifications across large domains. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Remarkably, siRNA production and heterochromatin modifications at genes are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover interplay between RNAi and the exosome that is conserved in higher eukaryotes, and show that differentiation signals modulate RNAi silencing to regulate developmental genes. 8 ChIP samples
Project description:RNAseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNAseIII enzyme Dcr1 and are required for heterochromatin formation. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif which constrains nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted towards either compartment. This has implications for the mechanism of RNAi-mediated heterochromatin assembly and the spatial organization of RNA silencing pathways in general. Small RNA libraries from total RNA isolations of wild-type, dcr1Delta and dcr1DeltaC33 cells and subjected to high-throughput sequencing.
Project description:RNAi is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing widespread occurrence of siRNA clusters and corresponding increase in heterochromatin modifications across large domains. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Remarkably, siRNA production and heterochromatin modifications at genes are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover interplay between RNAi and the exosome that is conserved in higher eukaryotes, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.
Project description:RNAi is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing widespread occurrence of siRNA clusters and corresponding increase in heterochromatin modifications across large domains. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Remarkably, siRNA production and heterochromatin modifications at genes are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover interplay between RNAi and the exosome that is conserved in higher eukaryotes, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.
Project description:The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA- based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear. Using fission yeast, we show that the conserved trimeric transcription factor (TF) Php|NF-Y complex, which includes histone fold domain proteins, can infiltrate constitutive heterochromatin to transcribe repeat elements. Php|NF-Y collaborates with a Zn-finger containing TF to bind repeat promoter regions with CCAAT boxes. Mutating either the TFs or the CCAAT binding site disrupts the transcription of heterochromatic repeats. Although repeat elements are transcribed from both strands, Php|NF-Y-dependent transcripts originate from only one strand. These TF-driven transcripts contain cryptic introns that are processed via a mechanism requiring the spliceosome to generate small interfering RNAs (siRNAs) by the RNAi machinery. Our analyses show that siRNA production by this TF-mediated transcription pathway is critical for heterochromatin nucleation at target repeat loci. This study reveals a mechanism by which heterochromatic repeats are transcribed, initiating their own silencing by triggering a primary cascade that produces siRNAs necessary for heterochromatin nucleation.