Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis
Ontology highlight
ABSTRACT: Epidermal growth factor (EGF) is a key regulatory growth factor activating a myriad of processes affecting cell proliferation and survival that are relevant to normal development and disease. Here we have used a combined approach to study the EGF dependent transcriptome of HeLa cells. We obtained mRNA expression profiles using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, Febit, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer I (GA-I). By applying a procedure for cross-platform data meta-analysis based on rank product and global ancova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We used this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we found a whole new set of genes previously unrelated to the currently accepted EGF associated cellular functions, among which are metallothionein genes. We propose the use of global genomic cross-validation to generate more reliable datasets derived from high content technologies (microarrays or deep sequencing). This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data. Keywords: treated vs. untreated comparison, time course
ORGANISM(S): Homo sapiens
PROVIDER: GSE17403 | GEO | 2011/07/18
SECONDARY ACCESSION(S): PRJNA118851
REPOSITORIES: GEO
ACCESS DATA