Project description:Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Children with germline mutations in RB1 have a high likelihood of developing retinoblastoma and other malignancies later in life. Genetically engineered mouse models of retinoblastoma share some similarities with human retinoblastoma but there are differences in their cellular differentiation. To develop a laboratory model of human retinoblastoma formation, we make induced pluripotent stem cells (iPSCs) from 15 participants with germline RB1 mutations. Each of the stem cell lines is validated, characterized and then differentiated into retina using a 3-dimensional organoid culture system. After 45 days in culture, the retinal organoids are dissociated and injected into the vitreous of eyes of immunocompromised mice to support retinoblastoma tumor growth. Retinoblastomas formed from retinal organoids made from patient-derived iPSCs have molecular, cellular and genomic features indistinguishable from human retinoblastomas. This model of human cancer based on patient-derived iPSCs with germline cancer predisposing mutations provides valuable insights into the cellular origins of this debilitating childhood disease as well as the mechanism of tumorigenesis following RB1 gene inactivation.
Project description:Retinoblastoma (Rb) is the most prevalent intraocular malignancy in early childhood. Traditional models are unable to accurately recapitulate the origin and development of human Rb. Here, we present a protocol to establish a novel human Rb organoid (hRBO) model derived from genetically engineered human embryonic stem cells (hESCs). This hRBO model exhibits properties highly consistent with human primary Rb and can be used effectively for dissecting the origination and pathogenesis of Rb as well as for screening of potential therapies. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).