Project description:Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). Over 1,800 miRNA loci are annotated in humans, but it remains largely unknown if and at which sites the pri-miRNAs are cleaved by DROSHA. Here we performed in vitro processing on a full set of human pri-miRNAs (miRBase v21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs based on DROSHA-dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing as well as unproductive cleavage events such as “nick” or “inverse” processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.
Project description:Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). Over 1,800 miRNA loci are annotated in humans, but it remains largely unknown if and at which sites the pri-miRNAs are cleaved by DROSHA. Here we performed in vitro processing on a full set of human pri-miRNAs (miRBase v21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs based on DROSHA-dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing as well as unproductive cleavage events such as “nick” or “inverse” processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.
Project description:Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). Over 1,800 miRNA loci are annotated in humans, but it remains largely unknown if and at which sites the pri-miRNAs are cleaved by DROSHA. Here we performed in vitro processing on a full set of human pri-miRNAs (miRBase v21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs based on DROSHA-dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing as well as unproductive cleavage events such as “nick” or “inverse” processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.