A genetic toolkit for studying transposon control in the Drosophila melanogaster ovary
Ontology highlight
ABSTRACT: Argonaute proteins of the PIWI-clade, complexed with PIWI-interacting RNAs (piRNAs), protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that integrates transgenic RNAi in the germline, GFP-marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only upon germ cell cyst formation. Stage specific RNAi allows investigating the role of genes essential for cell survival (e.g. nuclear RNA export or the SUMOylation pathways) in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit available from the Vienna Drosophila Resource Center.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE174611 | GEO | 2021/05/19
REPOSITORIES: GEO
ACCESS DATA