Mapping the glucocorticoid gene regulatory network and alterations that contribute to steroid resistance in childhood acute lymphoblastic leukemia [ATAC-seq]
Ontology highlight
ABSTRACT: Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. To therefore better understand the role of gene regulatory alterations in GC resistance, we comprehensively mapped the GC gene regulatory network in two ALL cell lines using orthogonal functional genomic assays and identified tens of thousands of GREs in the ALL genome. A closer examination revealed binding profiles that were consistent with the long-range flexible billboard model of gene regulation. GCs also induced the formation of over 250 super-enhancers, and these GC-responsive super-enhancers control the expression of genes mediating GC resistance. By further integrating our results with genetic and epigenetic data in primary ALL cells from patient cohorts at St. Jude, we identified 45 DNA sequence variants associated with ex vivo GC resistance that map to GREs and validated an associated variant within the TLE1 gene locus. We also uncovered that 1929 accessible chromatin sites associated with ex vivo GC resistance were significantly enriched at GREs. A CRISPR interference screen of these elements validated their effects on GC resistance. Overall, these data suggest that GCs initiate pervasive, genome-wide effects on the leukemia epigenome and transcriptome, while genetic and epigenetic alterations to GREs are mechanisms contributing to GC resistance in childhood ALL.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. In this work (which is a follow-up of our recent study- Bergeron et al. Leukemia 2022), we uncovered the genomic mechanism linking disruptions to the Wnt repressor gene TLE1 with glucocorticoid (GC) drug resistance in acute lymphoblastic leukemia. In this process we uncovered extensive crosstalk and mutual antagonism between GC signaling and canonical Wnt signaling in ALL cells at the DNA sequence, transcriptome and proteome levels.
Project description:Glucocorticoids (GCs) are a mainstay of contemporary, multi-drug chemotherapy in the treatment of acute lymphoblastic leukemia (ALL). Although overall survival rates of childhood ALL have improved, resistance to antileukemic agents remains a major clinical concern. In particular, resistance to GCs is predictive of ALL relapse and poor clinical outcome, and it therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes and transcriptional signatures implicated in ALL GC resistance, there remains an insufficient understanding of the impact of glucocorticoid response element (GRE) alterations in GC resistance. In this work (which is a follow-up of our recent study- Bergeron et al. Leukemia 2022), we uncovered the genomic mechanism linking disruptions to the Wnt repressor gene TLE1 with glucocorticoid (GC) drug resistance in acute lymphoblastic leukemia. In this process we uncovered extensive crosstalk and mutual antagonism between GC signaling and canonical Wnt signaling in ALL cells at the DNA sequence, transcriptome and proteome levels.
Project description:In spite of the considerable progress in risk stratification and therapeutic regimens in childhood acute lymphoblastic leukaemia (cALL), which has led to cure rates of above 90%, prognosis for patients with relapsed disease remains poor. The main cause of therapy failure is drug resistance, most commonly to glucocorticoids (GCs). While alterations of cell metabolism in cALL are considered a hallmark of this malignancy as well, the molecular differences between prednisolone sensitive and resistant lymphoblasts are not well-studied, thereby precluding the development of novel and targeted therapies. Therefore, the aim of this work was to investigate the biology of matched pairs of cell lines where GCs are effective and such with acquired lack of response to prednisolone. In order to address this, we took advantage of the molecular characterisation of an in vitro model of GC resistance we had previously developed. An integrated transcriptomic and metabolomic analysis revealed alterations in oxidative phosphorylation, glycolysis, amino acid, pyruvate and nucleotide biosynthesis, as well as activation of mTORC1 and MYC signaling, which are also known to control cell metabolism. In attempt to explore the potential therapeutic effect of inhibiting one of the hits from our analysis, we targeted the glutamine-glutamate-α-ketoglutarate axis by three different strategies, all of which impaired mitochondrial respiration and ATP production and induced apoptosis in both GC-sensitive and resistant cell lines. In summary, we report that prednisolone resistance may be accompanied by considerable rewiring of transcriptional and biosynthesis programs. We suggest that targeting glutamine metabolism presents a novel therapeutic approach in cALL.
Project description:The aim of the current study is to characterize the global alternative splicing profiles associated with ex vivo GC resistance in pediatric acute lymphoblastic leukemia (ALL). Specifically, we investigated differential splicing profiles in 38 primary childhood ALL samples by using RNA sequencing. Finally, we tested whether GC-resistant cell lines can be sensitized to GC treatment by using the SF3B modulator Pladienolide-B.
Project description:Glucocorticoids (GCs) are a central component of combination chemotherapy for childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). GCs work by activating the glucocorticoid receptor (GR), a ligand induced transcription factor, which in turn regulates genes that induce leukemic cell death. Which GR-regulated genes are required for GC cytotoxicity, the pathways that affect their regulation, and how resistance arises are not well understood. Here we systematically integrate the transcriptional response of B-ALL to GCs with a next-generation shRNA screen to identify GC-regulated “effector” genes that contribute to cell death as well as genes that affect the sensitivity of B-ALL cells to dex. This analysis reveals a pervasive role for GCs in suppression of B-cell development genes that is linked to therapeutic response. Inhibition of PI3Kδ, a lynchpin in the pre-B-cell receptor and IL7R signaling pathways critical to B-cell development, with CAL-101 (idelalisib), interrupts a double-negative feedback loop, enhancing GC-regulated transcription to synergistically kill even highly resistant B-ALL with diverse genetic backgrounds. This work not only identifies numerous opportunities for enhanced lymphoid-specific combination chemotherapy that have the potential to overcome treatment resistance, but is also a valuable resource for understanding GC biology and the mechanistic details of GR-regulated transcription. Please note that the cell lines and primary samples were processed and normalized separately.