RNA-sequencing for dynamic epi-transcriptomic landscape mapping with disease progression in ER-positive breast cancer
Ontology highlight
ABSTRACT: Advanced breast cancer is characterised by enhanced tumour adaptability to therapeutic pressure and the metastatic microenvironment. Transcriptome differences in three ER positive (ER+) cell models are uncovered through this RNA-seq analysis of MCF7 (endocrine sensitive), LY2 (endocrine resistant) and T347 (derived from an ER-positive, treatment resistant brain metastatic patient tumour) cells.
Project description:Advanced breast cancer is characterised by enhanced tumour adaptability to therapeutic pressure and the metastatic microenvironment. Targeting epi-transcriptomic modulators may reverse cellular adaptability, offering new therapeutic strategies to treat metastatic disease. This study looks into the dynamic adaptations that occur in cancer cells in response to therapeutic pressure and metastatic evolution by profiling mRNA epi-transcriptomic modifications in models of disease progression. ER positive (ER+) cell models were used to represent progressive breast cancer, MCF7 (endocrine sensitive), LY2 (endocrine resistant) and T347 (derived from an ER-positive, treatment resistant brain metastatic patient tumour) cells. MeRIP sequencing was undertaken to determine genome-wide RNA methylated regions.
Project description:We profile the binding of Steroid Receptor Co-activator (SRC1) in LY2 cells, a tamoxifen-resistant cell line, in the presence and absence of tamoxifen using ChIP-sequencing technology. The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity leading to the development of a steroid-independent tumour. The p160 steroid coactivataor protein SRC-1, through interactions with developmental proteins and other non-steroidal transcription factors, drives this tumour adaptability. Here, using discovery studies, we identify ADAM22, a non-protease member of the ADAMs family, as a direct, ER-independent target of SRC-1. Molecular, cellular and in vivo studies confirmed SRC-1 as a regulator of ADAM22. At a functional level, a role for ADAM22 in cellular migration and differentiation was observed. In vivo data from a mouse xenograft model indicated that ADAM22 expression was higher in 4-OHT-treated endocrine-resistant tumours than in tumours derived from isogenic, sensitive cells. Furthermore, in breast cancer patients, ADAM22 expression is an independent predictor of poor disease free survival. SRC-1 can function as a molecular switch which converts a steroid-responsive tumour to a steroid-resistant tumour. The ER-independent SRC-1 target ADAM22 is a potential drug target and a companion predictive biomarker in the treatment of endocrine-resistant breast cancer. Examination of SRC-1 binding in LY2 cells in the presence or absence of tamoxifen treatment. 2 replicates each.
Project description:We profile the binding of Steroid Receptor Co-activator (SRC1) in LY2 cells, a tamoxifen-resistant cell line, in the presence and absence of tamoxifen using ChIP-sequencing technology. The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity leading to the development of a steroid-independent tumour. The p160 steroid coactivataor protein SRC-1, through interactions with developmental proteins and other non-steroidal transcription factors, drives this tumour adaptability. Here, using discovery studies, we identify ADAM22, a non-protease member of the ADAMs family, as a direct, ER-independent target of SRC-1. Molecular, cellular and in vivo studies confirmed SRC-1 as a regulator of ADAM22. At a functional level, a role for ADAM22 in cellular migration and differentiation was observed. In vivo data from a mouse xenograft model indicated that ADAM22 expression was higher in 4-OHT-treated endocrine-resistant tumours than in tumours derived from isogenic, sensitive cells. Furthermore, in breast cancer patients, ADAM22 expression is an independent predictor of poor disease free survival. SRC-1 can function as a molecular switch which converts a steroid-responsive tumour to a steroid-resistant tumour. The ER-independent SRC-1 target ADAM22 is a potential drug target and a companion predictive biomarker in the treatment of endocrine-resistant breast cancer.
Project description:ER-dependent gene expression was investigated in the LY2 endocrine resistant cell line by treatment with ICI 182780. Cells were steroid depleted for 3 days prior to treatment with ICI for 6 hours. Four biological replicates were processed and analysed.
Project description:HMGB2 and ER ChIPseq was investigated in the MCF-7 endocrine sensitive and LY2 endocrine resistant cell lines upon treatment with Tamoxifen.
Project description:Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.
Project description:Advanced breast cancer is characterised by enhanced tumour adaptability to therapeutic pressure and the metastatic microenvironment. Transcriptome differences in 14 primary breast tumour samples (n = 14 samples) are uncovered through this comparative RNA-seq analysis of patients that responded well to therapy (n = 7) and patients who had disease recurrence on endocrine treatment (n = 7). RNA sequencing data is deposited as log2 transformed median-of-ratios (DESeq2) normalised counts gene expression values (44934 genes IDs; n = 14 tumour samples).
Project description:ER reprogramming promotes a select pro-metastatic secretome in high FOXA1-expressing ER-positive endocrine-resistant and metastatic breast cancer
Project description:The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity leading to the development of a steroid independent tumour. The p160 steroid coactivator protein SRC-1, through interactions with developmental proteins and other non-steroidal transcription factors drives this tumour adaptability. Here, using discovery studies we identify ADAM22, a non-protease member of the ADAMs family, as a direct target of SRC-1, independent of estrogen receptor(ER). Molecular, cellular, in vivo and clinical studies confirmed SRC-1 as a regulator of ADAM22 and established a role for ADAM22 in endocrine resistant tumour progression. ADAM22 has the potential to act as a therapeutic drug target and a companion predictive biomarker in the treatment of endocrine resistant breast cancer. 14 samples representing 4 conditions were analysed. Samples were transfected with either a siRNA targetting SRC1 or a control scrambled siRNA. Samples were subject to tamoxifen treatment or untreated.
Project description:The development of breast cancer resistance to endocrine therapy results from an increase in cellular plasticity leading to the development of a steroid independent tumour. The p160 steroid coactivator protein SRC-1, through interactions with developmental proteins and other non-steroidal transcription factors drives this tumour adaptability. Here, using discovery studies we identify ADAM22, a non-protease member of the ADAMs family, as a direct target of SRC-1, independent of estrogen receptor(ER). Molecular, cellular, in vivo and clinical studies confirmed SRC-1 as a regulator of ADAM22 and established a role for ADAM22 in endocrine resistant tumour progression. ADAM22 has the potential to act as a therapeutic drug target and a companion predictive biomarker in the treatment of endocrine resistant breast cancer.