MRP5 and MRP9 Play a Concerted Role in Male Reproduction and Mitochondrial Function
Ontology highlight
ABSTRACT: Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter as mrp-5 mutants are unviable due to their inability to export heme from the intestine to extra-intestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. By contrast, MRP5 in mammals regulates heme levels in the secretory pathway and MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 in mammals is MRP9/ABCC12, which is absent in C. elegans raising the possibility that MRP9 may genetically compensate for MRP5 deficiency. Here, we show that MRP5 and MRP9 double KO mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only in the absence of MRP5. Both ABCC transporters localize to mitochondrial-associated membranes (MAMs), dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes and RNA-seq show significant alterations in genes related to mitochondria function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
ORGANISM(S): Mus musculus
PROVIDER: GSE176740 | GEO | 2022/01/19
REPOSITORIES: GEO
ACCESS DATA