Long range spreading of dosage compensation in Drosophila captures transcribed autosomal genes inserted on X
Ontology highlight
ABSTRACT: Dosage compensation in D. melanogaster males is achieved via targeting of the MSL complex to X chromosomal genes. This is proposed to involve initial sequence-specific recognition of the X at ~150-300 chromatin entry sites, and subsequent spreading to nearby active genes. Here we test a model in which the spreading step requires transcription and is sequence-independent. We ask whether, in the native context of the X chromosome, MSL complex will target genes of autosomal origin. We find that MSL complex does bind such genes, but only if transcriptionally active. Targeting is accompanied by acetylation of the histone H4K16 residue and two-fold transcriptional up-regulation. We conclude that the presence of a long-sought specific DNA sequence within X-linked genes is not obligatory for MSL complex binding. Instead, physical linkage and transcription play the pivotal roles in the identification of MSL targets irrespective of their origin and DNA sequence. Keywords: Epigenetics
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE17729 | GEO | 2009/08/20
SECONDARY ACCESSION(S): PRJNA118377
REPOSITORIES: GEO
ACCESS DATA