Hierarchical rules for Argonaute loading in Drosophila
Ontology highlight
ABSTRACT: Drosophila Argonaute-1 and Argonaute-2 differ in function and small RNA content. AGO2 binds to siRNAs, whereas AGO1 is almost exclusively occupied by microRNAs. microRNA duplexes are intrinsically asymmetric, with one strand, the miR strand, preferentially entering AGO1 to recognize and regulate the expression of target mRNAs. The other strand, miR*, has been viewed as a by-product of microRNA biogenesis. Here, we show that miR*s are often loaded as functional species into AGO2. This indicates that each microRNA precursor can potentially produce two mature small RNA strands that are differentially sorted within the RNAi pathway. miR* biogenesis depends upon the canonical microRNA pathway, but loading into AGO2 is mediated by factors traditionally dedicated to siRNAs. By inferring and validating hierarchical rules that predict differential AGO loading, we find that intrinsic determinants, including structural and thermodynamic properties of the processed duplex, regulate the fate of each RNA strand within the RNAi pathway.
Project description:Drosophila Argonaute-1 and Argonaute-2 differ in function and small RNA content. AGO2 binds to siRNAs, whereas AGO1 is almost exclusively occupied by microRNAs. microRNA duplexes are intrinsically asymmetric, with one strand, the miR strand, preferentially entering AGO1 to recognize and regulate the expression of target mRNAs. The other strand, miR*, has been viewed as a by-product of microRNA biogenesis. Here, we show that miR*s are often loaded as functional species into AGO2. This indicates that each microRNA precursor can potentially produce two mature small RNA strands that are differentially sorted within the RNAi pathway. miR* biogenesis depends upon the canonical microRNA pathway, but loading into AGO2 is mediated by factors traditionally dedicated to siRNAs. By inferring and validating hierarchical rules that predict differential AGO loading, we find that intrinsic determinants, including structural and thermodynamic properties of the processed duplex, regulate the fate of each RNA strand within the RNAi pathway. These were independently processed and sequenced using the Illumina GAII platform. In total, five libraries were analyzed.
Project description:In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded character—as is found in small interfering RNAs (siRNAs)—directs duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide.
Project description:In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded characterM-bM-^@M-^Tas is found in small interfering RNAs (siRNAs)M-bM-^@M-^Tdirects duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide. Sequencing of small RNAs (either total small RNAs or Ago1-associated small RNAs) in wild-type, dcr-2 and r2d2 mutant flies. Small RNA sequencing, Small RNAs (18-29 nt long), Size selection (18 to 30 nt).
Project description:In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. Nuclear AGO1 is loaded with miRNAs and exported to the cytosol where it associates to the rough ER to conduct miRNA-mediated translational repression, mRNA cleavage and biogenesis of phased siRNAs. These latter, as well as other cytosolic siRNAs, are loaded into cytosolic AGO1, but in which compartment this happens is not known. Moreover, the effect of stress on AGO1 localization is still unclear. Here, we show that heat stress (HS) promotes AGO1 protein accumulation, which co-localize with components of the siRNA bodies and of stress granules (SGs). AGO1 does not need SGS3, a key component of siRNA bodies, to efficiently form condensates during HS. Instead, we found that the still poorly characterized N-terminal Poly-Q domain of AGO1, which contains a prion-like domain, is sufficient to undergo phase separation. Moreover, an exposure of 1 hour to HS only moderately affected AGO1 loading by miRNAs and target cleavage, suggesting that its localization in condensates protects AGO1 rather than promote its activity in reprograming gene expressing during stress. Collectively, our work shed new light on the impact of high temperature on a main effector of RNA silencing in plants.
Project description:Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. Contrary to dogma, AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with FLAG-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that the core RNAi machinery is conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners.
Project description:Argonaute (AGO) proteins execute Micro-RNA (miRNA) mediated gene silencing. However it is currently debated whether all 4 mammalian AGO proteins (AGO1, AGO2, AGO3 and AGO4) are required for miRNA activity. To address this, we generated a mouse with deleted Ago1, Ago3 and Ago4 genes (Ago134), and found that these Argonaute proteins are completely redundant for miRNA biogenesis, miRNA homeostasis or miRNA function, a role that is carried out exclusively by AGO2. Instead, AGO1/3/4 are required to curtail the expansion of Type-2 adaptive immunity in mice via regulation of precursor-mRNA (pre-mRNA) splicing in CD4+ TH lymphocytes. Gain- and loss-of-function experiments demonstrate that nuclear AGO3 interacts directly with SF3B3, a component of the U2 spliceosome complex, to aid global mRNA splicing. Our work uncouples AGO1, AGO3 and AGO4 from miRNA-mediated RNAi, discovers a new AGO3:SF3B3 complex in the cellular nucleus, and reveals an underappreciated mechanism by which AGO proteins prevent hyper-inflammatory disease.
Project description:Argonaute (AGO) proteins execute Micro-RNA (miRNA) mediated gene silencing. However it is currently debated whether all 4 mammalian AGO proteins (AGO1, AGO2, AGO3 and AGO4) are required for miRNA activity. To address this, we generated a mouse with deleted Ago1, Ago3 and Ago4 genes (Ago134), and found that these Argonaute proteins are completely redundant for miRNA biogenesis, miRNA homeostasis or miRNA function, a role that is carried out exclusively by AGO2. Instead, AGO1/3/4 are required to curtail the expansion of Type-2 adaptive immunity in mice via regulation of precursor-mRNA (pre-mRNA) splicing in CD4+ TH lymphocytes. Gain- and loss-of-function experiments demonstrate that nuclear AGO3 interacts directly with SF3B3, a component of the U2 spliceosome complex, to aid global mRNA splicing. Our work uncouples AGO1, AGO3 and AGO4 from miRNA-mediated RNAi, discovers a new AGO3:SF3B3 complex in the cellular nucleus, and reveals an underappreciated mechanism by which AGO proteins prevent hyper-inflammatory disease.
Project description:Argonaute (AGO) proteins execute Micro-RNA (miRNA) mediated gene silencing. However it is currently debated whether all 4 mammalian AGO proteins (AGO1, AGO2, AGO3 and AGO4) are required for miRNA activity. To address this, we generated a mouse with deleted Ago1, Ago3 and Ago4 genes (Ago134), and found that these Argonaute proteins are completely redundant for miRNA biogenesis, miRNA homeostasis or miRNA function, a role that is carried out exclusively by AGO2. Instead, AGO1/3/4 are required to curtail the expansion of Type-2 adaptive immunity in mice via regulation of precursor-mRNA (pre-mRNA) splicing in CD4+ TH lymphocytes. Gain- and loss-of-function experiments demonstrate that nuclear AGO3 interacts directly with SF3B3, a component of the U2 spliceosome complex, to aid global mRNA splicing. Our work uncouples AGO1, AGO3 and AGO4 from miRNA-mediated RNAi, discovers a new AGO3:SF3B3 complex in the cellular nucleus, and reveals an underappreciated mechanism by which AGO proteins prevent hyper-inflammatory disease.
Project description:In Drosophila, siRNAs are classified as endo- or exo-siRNAs based on their origin. Both are processed from double-stranded RNA precursors by Dcr-2, then loaded into the Argonaute protein Ago2. While exo-siRNAs serve to defend the cell against viruses, endo-siRNAs restrict the spread of selfish DNA in somatic cells, analogous to piRNAs in the germ line. Endo- and exo-siRNAs display a differential requirement for double-stranded RNA binding domain proteins (dsRBPs): R2D2 is needed to load exo-siRNAs into Ago2 while the PD isoform of Loquacious (Loqs-PD) stimulates Dcr-2 during the nucleolytic processing of hairpin-derived endo-siRNAs. In cell culture assays, R2D2 antagonizes Loqs-PD in endo-siRNA silencing and Loqs-PD is an inhibitor of RNA interference. Loqs-PD can interact via the C-terminus unique to this isoform with the DExH/D-helicase domain of Drosophila Dcr-2, where binding of R2D2 has also been localized. Separation of the two pathways is not complete; rather, the dicing and Ago2-loading steps appear uncoupled, analogous to the corresponding steps in miRNA biogenesis. Analysis of deep sequencing data further demonstrates that in r2d2 mutant flies, siRNAs can be loaded into Ago2 but not all siRNA classes are equally proficient for this. Thus, the canonical Ago2-RISC loading complex can be bypassed under certain circumstances. Examination of small RNAs from two different mutant strains as well as the corresponding heterozygous controls
Project description:Small RNAs regulate the genetic networks through a ribonucleoprotein complex called the RNA induced silencing complexes (RISC), which in mammals contains at its center one of four Argonaute proteins (Ago1-4). A key regulatory event in the RNAi and miRNA pathways is Ago loading, where double stranded small RNA duplexes are incorporated into RISC (pre-RISC) and then become single stranded (mature-RISC), a process that is not well understood. The Agos contain an evolutionary conserved PAZ (Piwi/Argonaute/Zwille) domain whose primary function is to bind the 3’-end of small RNAs. We created multiple Paz domain disrupted Ago mutant proteins and studied their biochemical properties and biological functionality in cells. We found that the Paz domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer substrate duplex RNAs, Paz-disrupted Agos bound duplex siRNAs but were unable to unwind/eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved Paz domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA and RNAi-based therapeutics. Various Argonautes associated small RNA profiles were generated by deep sequencing the Agos-IP samples in HEK293 Cells transfected with corresponding Argonaute.