RNA-seq profiles of rat cardiomyocytes overexpressing hsa-miR-106b-5p, hsa-miR-93-5p, hsa-miR-25-3p or cel-miR-67
Ontology highlight
ABSTRACT: Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. We report that the miR-106b~25cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. To identify the relevant targets of individual miRNAs in the miR-106b~15 cluster and elucidate the molecular mechanisms underlying the proliferative effects of this microRNA cluster, we assessed the global transcriptomic changes by deep-sequencing total neonatal mouse cardiomyocyte RNA after exogeneous transfection with hsa-miR-106b-5p, hsa-miR-93-5p, hsa-miR-25-3p and compared the transcriptomic profiles to cardiomyocytes transfected with cel-miR-67, a control miRNA.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE178867 | GEO | 2021/06/25
REPOSITORIES: GEO
ACCESS DATA