Global profiling of gene expression during glycerol-induced spore formation in Myxococcus xanthus
Ontology highlight
ABSTRACT: Myxococcus xanthus is a gram negative rod-shaped delta proteobacterium that differentiates into environmentally resistant spores in response to starvation. Little is known about the sporulation mechanism in part because sporulation occurs in a subpopulation of cells undergoing a lenghtly complex multicellular developmental program. This developmental program requires a solid surface, motility, a minimum population density and a sophisticated network of inter and intra-cellular signals which direct some cells first to aggregate into multicellular fruiting bodies and then to sporulate exclusively within these fruiting bodies. However, it has previously been demonstrated that synchronous conversion of vegetative cells into myxospores can also be triggered in nutrient-rich liquid medium by addition of glycerol to 0.5 M. Here, we took advantage of the glycerol-induced sporulation process to gain information about the core M. xanthus sprorulation mechanism. We determined changes in the global gene expression at 0.5, 1, 2, and 4 hours after glycerol induction compared to vegetative cells (wild-type DK1622). The expression of nearly 1,500 genes was found to be significantly altered at least two-fold within four hours of glycerol-induced development. Most of the known core sporulation marker genes were up-regulated, whereas most genes required for proper aggregation and fruiting body formation were not significantly regulated. Keywords: Time course of glycerol-induced (0.5 M final conc.) development with 4 time points referenced to vegetative cells
ORGANISM(S): Myxococcus xanthus
PROVIDER: GSE17912 | GEO | 2010/05/06
SECONDARY ACCESSION(S): PRJNA120055
REPOSITORIES: GEO
ACCESS DATA