ABSTRACT: Hematopoiesis changes over life to meet the demands of maturation and aging. Here, we find that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from gestation into adulthood, a process regulated by the heterochronic Lin28b/let-7 axis. Native fetal and neonatal HSPCs distribute with a pro-lymphoid/erythroid bias with a shift toward myeloid output in adulthood. By mining transcriptomic data comparing juvenile and adult HSPCs and reconstructing coordinately activated gene regulatory networks, we uncover the Polycomb repressor complex 1 (PRC1) component Cbx2 as an effector of Lin28b/let-7?s control of hematopoietic maturation. We find that juvenile Cbx2-/- hematopoietic tissues show impairment of B-lymphopoiesis, a precocious adult-like myeloid bias, and that Cbx2/PRC1 regulates developmental timing of expression of key hematopoietic transcription factors. These findings define a novel mechanism of epigenetic regulation of HSPC output as a function of age with potential impact on age-biased pediatric and adult blood disorders.
Project description:Leukemias are characterized by bone marrow failure due to oncogenic mutations of hematopoietic stem cells (HSC) or blood precursor cells. HSC differentiation and self-renewal properties are tightly regulated by Polycomb group (PcG) proteins, a well-characterized family of transcriptional epigenetic regulators. PcG proteins form two canonical complexes: Polycomb repressive complex 1 (PRC1), and Polycomb repressive complex 2 (PRC2).CBX proteins link the activity of PRC1 with PRC2, serving as critical regulators of PcG-mediating activity. While the functional role of some CBX proteins in cancer has been largely explored, recent reports support the specific role of CBX2 in human tumors, thus it represent a promising new target for anti-cancer strategies. To date, chromodomain inhibitors have been identified for CBX7 , but no molecules inhibiting CBX2 have been described. Nevertheless, different chromatin-modulating drugs such as histone deacetylase inhibitors (HDACi) are reported to regulate CBX2 targets on chromatin, suggesting that HDACi might be used to indirectly modulate aberrant effects of CBX2 in cancer. We describe a novel SAHA-mediated mechanism of CBX2 post-translational regulation. We found that CBX2 undergoes SAHA-induced SUMO2/3 modification and that CBX2 SUMOylation promotes its ubiquitination and proteasome-dependent degradation. We also identified the specific molecular pathway and key players regulating CBX2 stability, demonstrating that CBX4 and RNF4 act as the E3 SUMO and E3 ubiquitin ligase, respectively. Additionally, CBX2-depleted leukemic cells display impaired proliferation, showing that CBX2 is required for leukemia cell clonogenicity. Our study provides the first evidence of a non-canonical SAHA-mediated anti-tumorigenic activity via CBX2 SUMOylation and degradation
Project description:Cellular crosstalk within the bone marrow niche maintains hematopoietic stem and progenitor cell (HSPC) integrity and safeguards lifelong blood and immune cell production. Deeper understanding of reciprocal niche signals governing crucial properties of HSPCs is relevant to the pathophysiology of blood disorders and improving HSPC transplantation. Extracellular vesicles (EVs) are key factors of the HSPC secretome, providing signals that regulate homeostasis and stemness. Here we demonstrate ex vivo blockade of ceramide-dependent vesicle secretion from HSPCs activates an integrated stress response (ISR), promoting downstream mTOR inhibition and metabolic quiescence. Crucially, ceramide-EV depletion leads to striking improvements in long-term transplantation. The aggregate findings link ceramide-dependent EV secretion and the ISR as a regulatory dyad guarding HSPC homeostasis and long-term fitness. Translationally, these data support exploration of ceramide inhibition during ex vivo maintenance of HSPCs for adoptive transfer.
Project description:Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell-HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.
Project description:Obesity alters long-term functions of hematopoietic stem cells (HSPCs), which are associated with myelopoitic bias and maladapted pro-inflammatory phenotype. H3K4me3 histone modification is generally considered an activating histone marks and is also liked with epigenetic programming for trained immunity. We aim to identify how obesity in mice alter H3K4me3 marks in HSPCs and study its impact on HSPC functions in vitro and in vivo.
Project description:Polycomb Repressive Complex 2 (PRC2) has been shown to play a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use shRNA-mediated knockdown to survey the function of known PRC2 accessory factors in HSPCs by testing the competitive reconstitution capacity of transduced murine fetal liver cells. We find that similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult, mouse and human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. RNA-seq of jarid knockdown, suz knockdown and control from HSPC in 16 week old mice.
Project description:Hematopoietic cell fate decisions such as self-renewal and differentiation are highly regulated through multiple molecular pathways. One pathway, the ubiquitin proteasome system (UPS), controls protein levels by tagging them with polyubiquitin chains and promoting their degradation through the proteasome. Ubiquitin E3 ligases serve as the substrate-recognition component of the UPS. Through investigating the FBOX family of E3 ligases, we discovered that Fbxo21 was highly expressed in the hematopoietic stem and progenitor cell (HSPC) population, and showed low to no expression in mature myeloid populations. To determine the role of FBXO21 on HSPC maintenance, self-renewal, and differentiation, we generated shRNAs against FBXO21 and a hematopoietic specific Fbxo21 conditional knockout (cKO) mouse model. We found that silencing FBXO21 in HSPCs led to a loss in colony formation and an increase in cell differentiation in vitro. Additionally, stressing the HSPC populations in our Fbxo21 cKO mouse with 5-FU injections resulted in a decrease in survival, despite these populations showing minimal alterations during steady-state hematopoiesis. Although FBXO21 has previously been proposed to regulate cytokine signaling via ASK and p38, our results show that depletion of FBXO21 led to altered ERK signaling in vitro. Together, these findings suggest ubiquitin E3 ligase FBXO21 regulates HSPCs through cytokine mediated pathways.
Project description:The transcription factor GATA2 plays a major role in the generation and maintenance of the hematopoietic system. In humans, heterozygous germline mutations in GATA2 often lead to a loss of function of one allele, causing GATA2 haploinsufficiency. In mice, Gata2 has an essential regulatory function in hematopoietic stem cell (HSC) generation and maintenance. However, whereas Gata2-null mice are lethal at embryonic day (E) 10.53, Gata2 heterozygous (Gata2+/-) mice survive to adulthood with normal blood values. However, mouse models thus emerged as a useful source to identify the function of GATA2 in HSC generation and fitness, they leave the mechanisms causing the different aspects of GATA2 deficiency syndrome largely undiscovered. Zebrafish have the advantage of having two GATA2 orthologues; Gata2a and Gata2b. Gata2a is expressed predominantly in the vasculature and is required for programming of the hemogenic endothelium. Gata2b is expressed in hematopoietic stem/progenitor cells (HSPCs) and homozygous deletion (gata2b-/-) redirects HSPCs differentiation bias, thus mimicking one of the GATA2 haploinsufficiency phenotypes found in patients. But patients carry heterozygous rather than homozygous GATA2 mutations, we specifically focused on how heterozygous Gata2b mutations could be mechanistically linked to erythro-myelodysplasia, a major clinical hallmark of GATA2 patients. To investigate the mechanisms of heterozygous GATA2 mutation caused GATA2 deficiency syndrome, we created a heterozygous gata2b mutation zebrafish model and sorted the entire progenitor and HSPC population including the lymphoid population from kidney marrow (KM) of WT and mutated zebrafish based on the scatter profile of flow cytometry for single-cell RNA (scRNA) sequencing.
Project description:The transcription factor GATA2 plays a major role in the generation and maintenance of the hematopoietic system. In humans, heterozygous germline mutations in GATA2 often lead to a loss of function of one allele, causing GATA2 haploinsufficiency. In mice, Gata2 has an essential regulatory function in hematopoietic stem cell (HSC) generation and maintenance. However, whereas Gata2-null mice are lethal at embryonic day (E) 10.53, Gata2 heterozygous (Gata2+/-) mice survive to adulthood with normal blood values. However, mouse models thus emerged as a useful source to identify the function of GATA2 in HSC generation and fitness, they leave the mechanisms causing the different aspects of GATA2 deficiency syndrome largely undiscovered. Zebrafish have the advantage of having two GATA2 orthologues; Gata2a and Gata2b. Gata2a is expressed predominantly in the vasculature and is required for programming of the hemogenic endothelium. Gata2b is expressed in hematopoietic stem/progenitor cells (HSPCs) and homozygous deletion (gata2b-/-) redirects HSPCs differentiation bias, thus mimicking one of the GATA2 haploinsufficiency phenotypes found in patients. But patients carry heterozygous rather than homozygous GATA2 mutations, we specifically focused on how heterozygous Gata2b mutations could be mechanistically linked to erythro-myelodysplasia, a major clinical hallmark of GATA2 patients. To investigate the mechanisms of heterozygous GATA2 mutation caused GATA2 deficiency syndrome, we created a heterozygous gata2b mutation zebrafish model and sorted the entire progenitor and HSPC population including the lymphoid population from kidney marrow (KM) of WT and mutated zebrafish based on the scatter profile of flow cytometry for single-nucleus ATAC (snATAC) sequencing.
Project description:Hematopoietic stem/progenitor cells (HSPCs) are at the basis of the hematopoietic hierarchy. Their ability to self-renew and differentiate is strictly controlled by molecular signals produced by their surrounding micorenvironments composed of stromal cells. HSPCs first emerge in the AGM (Aorta Gonads Mesonephros) region, amplify in the fetal liver (FL) and are maintained in the adult bone marrow (BM). To further characterize the molecular program of the HSPC niches, we have compared the global transcriptome of HSPC-supportive and non/less-supportive stromal clones established from the AGM, FL and BM.
Project description:Ageing is associated with changes in the cellular composition of the immune system. During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune cells are thought to decline in their regenerative capacity. However, HSPC function has been mostly assessed using transplantation assays, and it remains unclear how HSPCs age in the native bone marrow niche. To address this issue, we present a novel in situ single cell lineage tracing technology to quantify the clonal composition and cell production of single cells in their native niche. Our results demonstrate that a pool of HSPCs with unequal output maintains myelopoiesis through overlapping waves of cell production throughout adult life. During ageing, the increased frequency of myeloid cells is explained by greater numbers of HSPCs contributing to myelopoiesis, rather than increased myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remained remains constant over time despite accumulating significant transcriptomic changes throughout adulthood. Together, these results show that, unlike emergency myelopoiesis post-transplantation, aged HSPCs in their native microenvironment do not functionally decline in their regenerative capacity. This repository contains single-cell RNA sequencing datasets of hematopoietic stem and progenitor cells from young and aged mice associated with this study