Pecan kinome: classification and expression analysis of all protein kinases in Carya illinoinensis
Ontology highlight
ABSTRACT: Protein kinases (PKs) are involved in plant growth and stress responses, and constitute one of the largest superfamilies due to numerous gene duplications. However, limited PKs have been functionally described in pecan, an economically important nut tree. Here, the comprehensive identification, annotation and classification of the entire pecan kinome was reported. A total of 967 PK genes were identified from pecan genome, and further classified into 20 different groups and 121 subfamilies using the kinase domain sequences, which were verified by the phylogenetic analysis. The receptor-like kinase (RLK) group contained 565 members, which constituted the largest group. Gene duplication contributed to the expansion of pecan kinome, 169 duplication events including 285 PK genes were found, and Ka/Ks ratio revealed they experienced strong negative selection. GO functional analysis indicated majority PKs involved in molecular functions and biological processes. The RNA-Seq data of PK genes in pecan were further analyzed at subfamily level, and different PK subfamilies performed various expression patterns across different conditions or treatments, suggesting PK genes in pecan involved in multiple biological functions and stress responses. Taken together, this study provided insight into the expansion, evolution and function of pecan PKs. Our findings regarding expansion, expression and co-expression analyses could lay a good foundation for future research to understand the roles of pecan PKs, and find the key candidate genes more efficiently.
Project description:Sexual development and male gamete formation of the malaria parasite in the mosquito midgut is initiated by rapid endomitosis in the activated male gametocyte. This process is highly regulated by protein phosphorylation, specifically by three divergent male-specific protein kinases (PKs): CDPK4, SRPK1 and MAP2. Here, we localise each PK during male gamete formation using live-cell imaging, identify their putative interacting partners by immunoprecipitation, and determine the morphological consequences of their absence using ultrastructure expansion and transmission electron microscopy. Each PK has a distinct location in either the nuclear or cytoplasmic compartment. Protein interaction studies revealed that CDPK4 and MAP2 interact with key drivers of rapid DNA replication, while SRPK1 is involved in RNA translation. The absence of each PK results in severe defects in either microtubule organising centre (MTOC) organisation, kinetochore segregation or axoneme formation. This study reveals the crucial role of these PKs during endomitosis in formation of the flagellated male gamete and uncovers some of their interacting partners that may drive this process.
Project description:Background The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. Results In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~10 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. Conclusions We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress. We sequenced mRNA from soybean cv. "Williams 82" root samples that includes three control samples (0 hr), and three biological replicates for each of the three time points 1, 6 and 12 hr under dehydration and salt stress
Project description:Background The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. Results In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~10 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. Conclusions We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Project description:Evaluation of the genome wide impact on gene expression of DNA-PK knockdown or enzymatic inhibition. DNA-PK expression is elevated in multiple tumor types. DNA-PK has recently been implicated in transcriptional regulation, so understanding genes modulated by DNA-PK may provide insight into disease progression 6 samples were analyzed. A genome-wide expression array was performed on a GeneChip Human Gene 2.0ST Array (Affymetrix, 902112) with C4-2 cells depleted of DNA-PK or treated with DNA-PK inhibitor for 24 hours
Project description:Colibactin, a bacterial genotoxin produced by E. coli harboring the pks genomic island, induces cytopathic effects such as DNA breaks, cell cycle arrest and apoptosis. Patients with a colonic dysfunction due to inflammatory bowel disease such as ulcerative colitis have an elevated likelihood of carrying pks+ E. coli in their colon microbiota but it is not clear whether and how they contribute to the pathogenesis of colitis. Using a gnotobiotic mouse model, we show that pks+ E. coli do not affect colonic integrity under homeostatic conditions, with the microbiota remaining separated from the epithelium by a mucus barrier. However, upon chemical disruption of this barrier by DSS, the microbes gain direct access to the epithelium, causing severe epithelial injury, and development of colitis, while mice colonized with an isogenic ΔclbR mutant incapable of producing colibactin suffer significantly less pronounced effects. While ΔclbR-colonized animals show efficient recovery of the mucus barrier and crypt homeostasis, recovery in WT-colonized mice is impaired. Instead, the mucosa remains in a chronic regenerative state characterized by high proliferation and impaired differentiation of enterocytes and goblet cells, preventing the re-establishment of a functional barrier. In turn, pks+ E. coli remain in direct contact with the epithelium, perpetuating the process and triggering chronic mucosal inflammation that morphologically and transcriptionally resembles human ulcerative colitis. It is characterized by high levels of stromal R-spondin 3. Genetic overexpression of R-spondin 3 in colon myofibroblasts is sufficient to mimic this chronic regenerative state, resulting in barrier disruption and expansion of E. coli. Together, our data reveal that pks+ E. coli are pathobionts that upon contact with the epithelium promote severe injury and interfere with recovery, initiating chronic tissue dysfunction and inflammation.
Project description:Evaluation of the genome wide impact on gene expression of DNA-PK knockdown or enzymatic inhibition. DNA-PK expression is elevated in multiple tumor types. DNA-PK has recently been implicated in transcriptional regulation, so understanding genes modulated by DNA-PK may provide insight into disease progression
Project description:For systematically improving geldanamycin yield, we investigated the gene expression profile on the fourth day during geldanamycin fermentation (geldanamycin began to largely accumulated on this day). According to the RNA-seq data, we deduced that the PKS genes gdmAI-AIII are rate-limiting genes for geldanamycin biosynthesis. We also found a strong endogeneous promoter according to the RNA-seq data and the reporter gene. Replacing the native PKS promoter with this strong promoter brought an obvious increase in geldanamycin yield.
Project description:Tandem duplication of carbapenemase genes amplifies the gene copy number and enhances carbapenem resistance. These amplifications are often heterogenous, transient, locate in plasmids, which often also contribute to heteroresistance. The duplication is especially important for low-hydrolysis activity enzymes, which is often overlooked or even under controversy. Here we reported an intrinsic oxacillinase duplication mediated by two neighbor ISAba1inserted in the same orientation. The duplication is relatively stable, located in chromosome, and the duplication times is up to twenty-five, much larger than previous reports. We provided genomic, transcriptomic, and proteomic evidence that the duplication resulted oxacillinase overproduction and thus contribute to carbapenem resistance. No other possible carbapenem resistance related changes (point mutations of oxaAb, disturbed expression of porin protein and efflux pump) were found during the duplication process. Furthermore, introducing oxaAb flanked by two ISAba1 to A. baumannii via plasmids, mimicked the in vivo duplication process under carbapenem stress. Taken together, ISAba1 mediated duplication of low activity intrinsic antibiotic hydrolysis enzymes could lead to antibiotic resistance for advanced-generation antibiotics.