Downregulation of WT1 transcription factor gene expression is required to promote myocardial fate [RNA-seq]
Ontology highlight
ABSTRACT: During cardiac development, cells from the precardiac mesoderm fuse to form the primordial heart tube, which then grows by addition of further progenitors to the venous and arterial poles. In the zebrafish, wilms tumor 1 transcription factor a (wt1a) and b (wt1b) are expressed in the pericardial mesoderm at the venous pole of the forming heart tube. The pericardial mesoderm forms a single layered mesothelial sheet that contributes to further the growth of the myocardium, and forms the proepicardium. Proepicardial cells are subsequently transferred to the myocardial surface and give rise to the epicardium, the outer layer covering the myocardium in the adult heart. wt1a/b expression is downregulated during the transition from pericardium to myocardium, but remains high in proepicardial cells. Here we show that sustained wt1 expression impaired cardiomyocyte maturation including sarcomere assembly, ultimately affecting heart morphology and cardiac function. ATAC-seq data analysis of cardiomyocytes overexpressing wt1 revealed that chromatin regions associated with myocardial differentiation genes remain closed upon wt1b overexpression in cardiomyocytes, suggesting that wt1 represses a myocardial differentiation program. Indeed, a subset of wt1a/b-expressing cardiomyocytes changed their cell adhesion properties, delaminated from the myocardial epithelium, and upregulated the expression of epicardial genes, as confirmed by in vivo imaging. Thus, we conclude that wt1 acts as a break for cardiomyocyte differentiation by repressing chromatin opening at specific genomic loci and that sustained ectopic expression of wt1 in cardiomyocytes can lead to their transformation into epicardial cells.
Project description:During cardiac development, cells from the precardiac mesoderm fuse to form the primordial heart tube, which then grows by addition of further progenitors to the venous and arterial poles. In the zebrafish, wilms tumor 1 transcription factor a (wt1a) and b (wt1b) are expressed in the pericardial mesoderm at the venous pole of the forming heart tube. The pericardial mesoderm forms a single layered mesothelial sheet that contributes to further the growth of the myocardium, and forms the proepicardium. Proepicardial cells are subsequently transferred to the myocardial surface and give rise to the epicardium, the outer layer covering the myocardium in the adult heart. wt1a/b expression is downregulated during the transition from pericardium to myocardium, but remains high in proepicardial cells. Here we show that sustained wt1 expression impaired cardiomyocyte maturation including sarcomere assembly, ultimately affecting heart morphology and cardiac function. ATAC-seq data analysis of cardiomyocytes overexpressing wt1 revealed that chromatin regions associated with myocardial differentiation genes remain closed upon wt1b overexpression in cardiomyocytes, suggesting that wt1 represses a myocardial differentiation program. Indeed, a subset of wt1a/b-expressing cardiomyocytes changed their cell adhesion properties, delaminated from the myocardial epithelium, and upregulated the expression of epicardial genes, as confirmed by in vivo imaging. Thus, we conclude that wt1 acts as a break for cardiomyocyte differentiation by repressing chromatin opening at specific genomic loci and that sustained ectopic expression of wt1 in cardiomyocytes can lead to their transformation into epicardial cells.
Project description:Purpose: Studying the epicardium-myocardium crosstalk in the zebrafish larval heart. To do so, we aimed to identify, with RNA-seq, the genes dysregulated following the loss of the epicardial marker gene tcf21 in sorted epicardial cells and cardiomyocytes. Results: We first analyzed the transcriptome of epicardial and myocardial WT cells and identified cell-type specific/enriched genes. Then, we identified several differential expressed genes in tcf21 mutants, including several ligand-receptor couples known to mediate the epicardium-myocardium crosstalk.
Project description:Epicardial cells can undergo epithelium-to-mesenchymal transition (EMT) upon which the epicardium-derived cells (EPDCs) migrate into the myocardium and deliver growth factors or differentiate into smooth muscle cells or fibroblasts. The cell fate of EPDCs has been proposed to be determined by the persistence of subpopulations found in the proepicardial organ, but findings regarding this epicardial heterogeneity have been inconsistent. In the human heart, the composition of the developing epicardium is largely unknown. Here we performed a direct analysis of the human fetal epicardium through single cell RNA sequencing to investigate its composition and to search for regulators of developmental processes
Project description:Mice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. ( Experiment Overall Design: Hearts were dissected from E12.5 wildtype (n=3) and Sp3 knockout (n=3) fetuses. Total RNA was isolated from individual hearts; 5μg was used for labelling and hybridization to 430 2.0 Gene Chips (a total of 6).
Project description:By contrast with mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of spared cardiomyocytes. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. While it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. In this study, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin-1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration. Deep sequencing of isolated single epicardial cells
Project description:Myocardial damage caused for example by cardiac ischemia leads to ventricular volume overload resulting in increased stretch of the remaining myocardium. In adult mammals, these changes trigger an adaptive cardiomyocyte hypertrophic response which, if the damage is extensive, will ultimately lead to pathological hypertrophy and heart failure. Conversely, in response to extensive myocardial damage, cardiomyocytes in the adult zebrafish heart and neonatal mice proliferate and completely regenerate the damaged myocardium. We therefore hypothesized that in adult zebrafish, changes in mechanical loading due to myocardial damage may act as a trigger to induce cardiac regeneration. Based, on this notion we sought to identify mechanosensors which could be involved in detecting changes in mechanical loading and triggering regeneration. Here we show using a combination of knockout animals, RNAseq and in vitro assays that the mechanosensitive ion channel Trpc6a is required by cardiomyocytes for successful cardiac regeneration in adult zebrafish. Furthermore, using a cyclic cell stretch assay, we have determined that Trpc6a induces the expression of components of the AP1 transcription complex in response to mechanical stretch. Our data highlights how changes in mechanical forces due to myocardial damage can be detected by mechanosensors which in turn can trigger cardiac regeneration.
Project description:Mice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. ( Keywords: Transcription factors, Sp3, knockout mice, cardiac malformations, E12.5
Project description:In the adult heart, the epicardium becomes activated after injury, contributing to cardiac healing by secretion of paracrine factors. Here we analyzed by single-cell RNA sequencing combined with RNA in situ hybridization and lineage tracing of WT1+ cells the cellular composition, location, and hierarchy of epicardial stromal cells (EpiSC) in comparison to activated myocardial fibroblasts/stromal cells in infarcted mouse hearts. We identified 11 transcriptionally distinct EpiSC populations, that can be classified in three groups each containing a cluster of proliferating cells. Two groups expressed cardiac specification makers and sarcomeric proteins suggestive of cardiomyogenic potential. Transcripts of HIF-1α and HIF-responsive genes were enriched in EpiSC consistent with the epicardium being a hypoxic niche. Expression of paracrine factors was not limited to WT1+ cells but was a general feature of activated cardiac stromal cells. Our findings provide the cellular framework by which myocardial ischemia may trigger in EpiSC the formation of cardioprotective/regenerative responses.
Project description:KMT2D is required in the cardiac mesoderm, anterior heart field precursors and cardiomyocytes. Kmt2d deletion in cardiac mesoderm (Mesp1Cre) is embryonic lethal at E10.5 and mutants have hypoplastic hearts; Kmt2d deletion in anterior heart field precursors (Mef2cAHF::Cre) deletion is embryonic lethal at E13.5 and mutants have defects in septation of outflow tract and interventricular septum (IVS); Kmt2d deletion in cardiomyocytes (Tnnt2::Cre) deletion is embryonic lethal at E14.5 and mutants have defects in IVS septation and compact myocardium. The goal of this study is to compare changes in gene expression in these Kmt2d conditional deletion mutants and understand common or distinct pathways dysregulated in absence of KMT2D. Whole genome gene expression analysis was performed on RNA isolated from control and mutant embryonic hearts (or right ventricles and outflow tract for anterior heart field deletion samples). Libraries were prepared using Illumina TruSeq Paired-End Cluster Kit v3, and sequenced with the Illumina HiSeq 2500 system for pair-ended 100 base pairs (PE 100 bp).
Project description:Ischemic heart disease remains the leading cause of mortality and morbidity worldwide despite improved possibilities in medical care. Alongside interventional therapies, such as coronary artery bypass grafting (CABG), adjuvant tissue-engineered and cell-based treatments can provide regenerative improvement. Unfortunately, most of these advanced approaches require multiple lengthy and costly preparation stages without in turn delivering significant clinical benefit.
Here, we investigated the effect of epicardial matrix patch-encased atrial appendage micrografts (AAMs) in a mouse model of myocardial infarction. The matrix-covered AAM patches salvaged the myocardium from infarction-induced functional tissue loss. Fibrosis was attenuated, and site-targeted proteomics revealed AAM patch-activated pathways for angiogenesis and cardiogenesis. The matrix component of the graft further supports functional myocardial recovery by ventricular unloading.
The composite epicardial matrix graft encasing AAM micrografts delivers effects desirable for adjuvant cardiac therapy preserving functional cardiac tissue and restricting fibrosis after myocardial infarction.