Rice root response atlas
Ontology highlight
ABSTRACT: Rice has evolved regulatory programs and specialized cell types that allow the plant to withstand different environments. To understand how rice root systems cope with water stresses, we profiled translatomes (ribosome-associated mRNAs) and accessible chromatin of developmentally-defined root cell populations from well-watered and drained control (aerobic control), water deficit, waterlogged, fully submerged plants and recovery conditions. Whereas, the waterlogging responses are limited to specific root domains, water deficit and submergence signatures are extensive, and mostly reversible after 1 day of recovery, relative to control roots. Root systems were also evaluated in rice cultivated in a paddy field. Specific responses include a halt in the cell-cycle and DNA synthesis-related genes translation in meristematic tissue under submergence and exo/endodermis suberin-related pathways bolstering under water deficit. Chromatin accessibility and translatome data integration was used to generate inferred regulatory networks that are dynamically regulated by changing water availability. The data collection is further enriched by translatome and chromatin accessibility data for the root systems of plate-grown seedlings (7 day old) and those cultivated in a paddy field (49 day old). An atlas of eight cell population translatomes for field-grown plants exhibited robust cell type expression. Collectively, these data for specific cell populations at multiple developmental ages and in multiple environments including growth two limiting water stresses will serve as a community resource.
ORGANISM(S): Oryza sativa Japonica Group
PROVIDER: GSE180100 | GEO | 2022/05/02
REPOSITORIES: GEO
ACCESS DATA