Project description:This SuperSeries is composed of the following subset Series: GSE17757: Gene expression data from primate postnatal brain in prefrontal cortex: time course GSE18012: miRNA expression data from human postnatal brain in prefrontal cortex: time course GSE18013: miRNA expression data from rhesus macaque postnatal brain in prefrontal cortex: time course Refer to individual Series
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains (superior frontal gyrus) of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood.
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains (superior frontal gyrus) of humans and rhesus macaques over the entire speciesâ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Human post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the indibiual in human covered its whole life span fom newborn to death. RNA extracted from the dissected tissue was hybridized to Affymetrix® Human Gene 1.0 ST arrays. Rhesus macaque post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the indibiual in rhesus macaque covered the whole life span fom newborn to death. RNA extracted from the dissected tissue was hybridized to Affymetrix® Human Gene 1.0 ST arrays.
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Keywords: miRNA Age Series Keywords: Non-coding RNA profiling by high throughput sequencing
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Keywords: miRNA Age Series Keywords: Non-coding RNA profiling by high throughput sequencing Human post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the indibiual in rhesus macaque covered the whole life span fom newborn to death.
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Keywords: miRNA Age Series Keywords: Non-coding RNA profiling by high throughput sequencing
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Keywords: miRNA Age Series Keywords: Non-coding RNA profiling by high throughput sequencing rhesus macaque post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the indibiual in rhesus macaque covered the whole life span fom newborn to death.
Project description:We investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities. Keywords: Age series Human, chimpanzee and rhesus macaque post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the individuals in all three species covered the respective species' postnatal maturation period from infancy to old adulthood. RNA extracted from the dissected tissue was hybridized to Affymetrix® Human Gene 1.0 ST arrays. PFC samples.