A hierarchical regulatory network ensures stable albumin transcription under various pathophysiological conditions
Ontology highlight
ABSTRACT: Physiologically, albumin is produced by hepatocytes. It remains largely unknown how patients are capable of maintaining essential albumin levels even in the condition of liver failure. Here, we delineate a hierarchical regulatory network that controls albumin transcription under different pathophysiological conditions. The ALB core promoter possesses a TATA box and nucleosome-free area, which allows constitutive binding of RNA Pol II and thus initiation of transcription. In normal conditions, HNF4α and C/EBPα facilitate albumin transcription through binding to its promoter. In severely damaged livers, hepatocellular HNF4α and C/EBPα expression is often inhibited. The absence of HNF4 and C/EBPα increases hedgehog ligand biosynthesis. Hedgehog upregulates FOXA2 expression through transcription factor GLI2 binding to the FOXA2 promoter. Subsequently, FOXA2 maintains albumin expression in the hepatocytes lacking HNF4α and C/EBPα. In patients with massive hepatocyte loss, the expression of albumin is activated in liver progenitor cells. Albumin transcription in these cells is regulated by HNF4α or FOXA2. Taken together, HNF4α, C/EBPα and FOXA2 form a hierarchical regulatory network that ensures stable albumin expression even in pathophysiological conditions.
ORGANISM(S): Mus musculus
PROVIDER: GSE181201 | GEO | 2022/04/06
REPOSITORIES: GEO
ACCESS DATA