RNA-seq profiling of colon and ileum tissues from the UC Davis Type 2 Diabetes Mellitus Rat Model
Ontology highlight
ABSTRACT: The RNA-seq analysis continues our work profiling the the gastrointestinal tract of the UC Davis Type 2 Diabetes Mellitus (UCD-T2DM) Rat. Male UCD-T2DM rats (age ~170 days) were included in this study if either recently diagnosed as diabetic (n=6, RD, nonfasting glucose > 300 mg/dl) or 3-month post-onset of diabetes (n=6, D3M). A set of younger non-diabetic UCD-T2DM rats were also studied as a non-diabetic comparison (n=6, ND, age ~70 days).
Project description:Increased morbidity and mortality associated with post-ischemic heart failure (HF) in diabetic patients underscore the need for a better understanding of the underlying molecular events. Indeed, effective HF therapy in diabetic patients requires a complex strategy encompassing the development of improved diagnostic and prognostic markers and innovative pharmacological approaches. Whole mRNAs expression was measured in the heart of patients with heart failure (HF) with or without concomitant Type 2 diabetes mellitus (T2DM) and compared it to control non-failing hearts. We identified distinct genes modulated in HF patients compared to controls, as well as to T2DM HF patients compared to not diabetic HF patients. Our study included left ventricle (LV) cardiac biopsies taken from the vital, non-infarcted zone (remote zone) derived from patients affected by dilated hypokinetic post-ischemic cardiomyopathy, undergoing surgical ventricular restoration procedure. Inclusion criteria for diabetic were: GLICEMIA: >=126 mg/dl, previous T2DM diagnosis or anti-diabetic therapy, while for non diabetic: GLICEMIA: <100 mg/dl and HbA1c: n.v. 4.8-6.0%. Moreover, HF patients were matched for End Systolic Volume (ESV), Ejection fraction (LVEF), Age, Sex, Ethnic distribution, Smoke habits, Hypertension, Glomerular filtration rate (GFR), Body Mass Index (BMI). Genes expression was assessed by Affymetrix GeneChips Human Gene 1.0 ST array, using total RNA extracted from 7 T2DM HF patients, 12 non-T2DM HF patients and 5 controls.
Project description:Objective Type 2 diabetes mellitus (T2DM) is one of the high risk factors for sarcopenia. However, the pathogenesis of diabetic sarcopenia has not been fully elucidated. This study obtained transcriptome profiles of gastrocnemius muscle in normal and T2DM rats based on high-throughput sequencing technology, which may provide new ideas for exploring the pathogenesis of diabetic sarcopenia. Methods Twelve adult male Sprague-Dawley rats were randomly divided into Control group and T2DM group, and gastrocnemius muscle tissue was retained for transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) 6 months later. Screening differentially expressed genes (DEGs), Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Gnomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. Six DEGs related to apoptosis were selected for qTR-PCR verification.
Project description:Puberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-β) signaling system would be differentially regulated in male rats depending on the age of onset of DM. Experiment Overall Design: Male rat littermates began the 6-week-protocol at 4 or 14 weeks of age with injection of streptozocin, 65 mg/kg iv, or equal volume of vehicle. 3 days later insulin palmitate or palmitate vehicle pellets were implanted once hyperglycemia was confirmed. Rats received ad lib food and water for 6 weeks and maintained blood glucose levels 350-350 mg/dl in diabetic groups. Kidneys were removed under isoflurane anesthesia. The cortex was rapidly dissected from the medulla and snap-frozen. Cortex was stored at -80 until all rats had completed the protocol. RNA was isolated from renal cortex and the transcriptome analyzed using gene chips with more than 30,000 transcripts. Age-specific effects of DM were demonstrated for 1,760 transcripts. Analysis then focused on 89 genes involved in the TGF-β signaling pathway.
Project description:We performed microarray miRNA expression profiling of diabetes induced rat via intraperitoneal (I.P) administration of streptozotocin (STZ). Rats were considered diabetic when their blood glucose exceeded 200 mg/dL (11 mmol/L).
Project description:The main cause of morbidity and mortality in diabetes mellitus (DM) are cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here we compared these two models for their effects on cardiac structure, function, and transcriptome. Different doses of STZ and different diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and non-obese sex and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR, and RNA-Seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM differently affect left ventricular function and myocardial performance. T1DM displays an exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis along with increased cardiac oxidative stress, CM DNA damage and senescence when compared to T2DM mice. T1DM and T2DM differently affect whole cardiac transcriptome. In conclusion, STZ-induced T1DM and T2DM mouse models show significant differences in cardiac remodeling, function and whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.
Project description:Glucagon and insulin are counter-regulatory pancreatic hormones that precisely control blood glucose homeostasis1. Type 2 diabetes mellitus (T2DM) is characterized by inappropriately elevated blood glucagon2-5 levels as well as insufficient glucose stimulated insulin secretion (GSIS) by pancreatic ß-cells6. Early in the pathogenesis of T2DM, hyperglucagonemia is observable antecedent to ß-cell dysfunction7-9; and in mice, liver-specific activation of glucagon receptor-dependent signaling results in impaired GSIS10. However, the mechanistic relationship between hyperglucagonemia, hepatic glucagon action, and ß-cell dysfunction remains poorly understood. Here we show that glucagon action stimulates hepatic production of the neuropeptide kisspeptin1, which acts in an endocrine manner on ß-cells to suppress GSIS. In vivo glucagon administration acutely stimulates hepatic kisspeptin1 production, and kisspeptin1 is increased in livers from humans with T2DM and from mouse models of diabetes mellitus. Synthetic kisspeptin1 potently suppresses GSIS in vivo and in vitro from normal isolated islets, which express the kisspeptin1 receptor Kiss1R. Administration of a Kiss1R antagonist in diabetic Leprdb/db mice potently augments GSIS and reduces glycemia. Our observations indicate in the pathogenesis of T2DM an endocrine mechanism sequentially linking hyperglucagonemia via hepatic kisspeptin1 production to impaired insulin secretion. In addition, our findings suggest Kiss1R antagonism as a therapeutic avenue to improve ß-cell function in T2DM. Total RNA from L-Δprkar1a KO mice compared to control D-glucose mice
Project description:This study aims to identify changes in non-esterified fatty acid (NEFAs) in the plasma with triphenyl phosphate (TPP) exposure. UC Davis type 2 diabetes mellitus (UCD-T2DM) rats were treated with TPP or not treated. Each group was analyzed for non-esterified fatty acid (NEFA) changes to investigate alterations in NEFAs due to TPP exposure. Targeted analysis of NEFA in rat plasma samples was performed by the Newman lab.
Project description:Glucagon and insulin are counter-regulatory pancreatic hormones that precisely control blood glucose homeostasis1. Type 2 diabetes mellitus (T2DM) is characterized by inappropriately elevated blood glucagon2-5 levels as well as insufficient glucose stimulated insulin secretion (GSIS) by pancreatic ß-cells6. Early in the pathogenesis of T2DM, hyperglucagonemia is observable antecedent to ß-cell dysfunction7-9; and in mice, liver-specific activation of glucagon receptor-dependent signaling results in impaired GSIS10. However, the mechanistic relationship between hyperglucagonemia, hepatic glucagon action, and ß-cell dysfunction remains poorly understood. Here we show that glucagon action stimulates hepatic production of the neuropeptide kisspeptin1, which acts in an endocrine manner on ß-cells to suppress GSIS. In vivo glucagon administration acutely stimulates hepatic kisspeptin1 production, and kisspeptin1 is increased in livers from humans with T2DM and from mouse models of diabetes mellitus. Synthetic kisspeptin1 potently suppresses GSIS in vivo and in vitro from normal isolated islets, which express the kisspeptin1 receptor Kiss1R. Administration of a Kiss1R antagonist in diabetic Leprdb/db mice potently augments GSIS and reduces glycemia. Our observations indicate in the pathogenesis of T2DM an endocrine mechanism sequentially linking hyperglucagonemia via hepatic kisspeptin1 production to impaired insulin secretion. In addition, our findings suggest Kiss1R antagonism as a therapeutic avenue to improve ß-cell function in T2DM.
Project description:Skeletal muscle mitochondrial dysfunction is secondary to T2DM and can be improved by long-term regular exercise training Mitochondrial dysfunction has long been implicated to play a causative role in development of type 2 diabetes (T2DM). However, a growing number of recent studies provide data that mitochondrial dysfunction is a consequence of T2DM development. The aim of our study is to clarify in further detail the causal role of mitochondrial dysfunction in T2DM by a comprehensive ex vivo analysis of mitochondrial function combined with global gene expression analysis in muscle of pre-diabetic newly diagnosed untreated T2DM subjects and long-standing insulin treated T2DM subjects compared with age- and BMI-matched controls. In addition, we assessed the impact of long-term interval exercise training on physical activity performance, mitochondrial function and glycemic control in long-standing insulin-treated T2DM subjects. Ex vivo mitochondrial density, quality and functioning was comparable between pre-diabetic subjects and matched controls, however, gene expression analysis showed a switch from carbohydrate toward lipids as energy source in pre-diabetes subjects. In contrast, long-term insulin treated T2DM subjects had slightly decreased mitochondrial density and ex vivo function. Expression of Krebs cycle and OXPHOS related genes were decreased, indicating a decreased capacity to use lipids as an energy source. The insulin-treated T2DM subjects had a lower physical activity level than pre-diabetic and normoglycemic subjects. A 52 weeks exercise training of these subjects increased submaximal oxidative efficiency, increased in vivo PCr recovery rate, as well as mildly increased in vitro mitochondrial function. Gene expression of β-oxidation, Krebs cycle and OXPHOS-related genes was increased. Our data demonstrate that mitochondrial dysfunction is rather a consequence than a causative factor in T2DM development as it was only detected in overt diabetes and not in early diabetes. Regular exercise training stabilized exogenous insulin requirement and improved mitochondrial functioning, fatty acid oxidation and general physical work load capacity in long-standing insulin-treated T2DM subjects. As such, the present study shows for the first time that long-term exercise interventions are beneficial in this group of complex diabetes patient and may prevent further metabolic deterioration. Insulin-treated T2DM subjects before and after 52 weeks of exercise training (T2DM_0 and T2DM_52), normoglycemic controls (NGT) and pre-diabetes subjects (IGT) and were selected. RNA was extracted from skeletal muscle biopsies and hybridized on Affymetrix microarrays.
Project description:Diabetes mellitus (DM) is a leading cause of chronic kidney disease and the pathobiology of diabetic nephropathy is widely studied. Less, however, is known about urinary bladder disease in DM despite dysfunctional voiding being a common clinical problem. We hypothesised that diabetic cystopathy would have a characteristic molecular signature, due to the adaptive response to increased urine load combined with the metabolic impacts of DM. To distinguish the consequences of DM from polyuria we compared bladders of untreated control, diabetic (streptozotocin-induced) and sucrose-treated male Wistar rats after 16 weeks using gene array