Mitophagy promotes resistance to BH3 mimetics in acute myeloid leukemia
Ontology highlight
ABSTRACT: BH3 mimetics are used as an efficient strategy to promote mitochondrial-dependent cell death in blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML, while various compounds targeting MCL1 are in clinical trials. Yet, drug resistance eventually ensues, highlighting the urgency to understand the underlying mechanisms. Our genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy regulators sensitizes AML to BH3 mimetics. One such regulator is Mitofusin-2 (MFN2), a GTPase that controls mitochondrial dynamics and the degradation of damaged mitochondria through mitophagy. Resistance to BH3 mimetics is accompanied by alterations in mitochondrial morphology, enhanced mitochondria-endoplasmic reticulum interactions, and augmented mitophagy flux. MFN2 inactivation, using a novel small molecule inhibitor, and pharmacologic inhibition of mitophagy synergizes with BH3 mimetics. Overall, targeting of mitophagy along with BCL2-family members is a promising strategy to overcome drug resistance in AML.
ORGANISM(S): Homo sapiens
PROVIDER: GSE182401 | GEO | 2023/07/10
REPOSITORIES: GEO
ACCESS DATA