Project description:ObjectiveInterferon regulatory factor (IRF) 5 is a transcription factor known for promoting M1 type macrophage polarization in vitro. Given the central role of inflammatory macrophages in promoting atherosclerotic plaque progression, we hypothesize that myeloid cell-specific deletion of IRF5 is protective against atherosclerosis.MethodsFemale Apoe-/-LysmCre/+Irf5fl/fl and Apoe-/-Irf5fl/fl mice were fed a high-cholesterol diet for three months. Atherosclerotic plaque size and compositions as well as inflammatory gene expression were analyzed. Mechanistically, IRF5-dependent bone marrow-derived macrophage cytokine profiles were tested under M1 and M2 polarizing conditions. Mixed bone marrow chimeras were generated to determine intrinsic IRF5-dependent effects on macrophage accumulation in atherosclerotic plaques.ResultsMyeloid cell-specific Irf5 deficiency blunted LPS/IFNγ-induced inflammatory gene expression in vitro and in the atherosclerotic aorta in vivo. While atherosclerotic lesion size was not reduced in myeloid cell-specific Irf5-deficient Apoe-/- mice, plaque composition was favorably altered, resembling a stable plaque phenotype with reduced macrophage and lipid contents, reduced inflammatory gene expression and increased collagen deposition alongside elevated Mertk and Tgfβ expression. Irf5-deficient macrophages, when directly competing with wild type macrophages in the same mouse, were less prone to accumulate in atherosclerotic lesion, independent of monocyte recruitment. Irf5-deficient monocytes, when exposed to oxidized low density lipoprotein, were less likely to differentiate into macrophage foam cells, and Irf5-deficient macrophages proliferated less in the plaque.ConclusionOur study provides genetic evidence that selectively altering macrophage polarization induces a stable plaque phenotype in mice.
Project description:BackgroundSphingomyelin synthase 2 (SMS2) contributes to de novo sphingomyelin (SM) biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis.MethodsThe Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR) and protein level examination (SMS activity assay).ResultWe generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2) or GFP cDNA (AdV-GFP). On day six after intravenous infusion of 2 × 10(11) particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p < 0.001, respectively), compared to AdV-GFP treated mice. Moreover, plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and sphingomyelin (SM) levels were significantly increased by 39% (p < 0.05), 42% (p < 0.05), 68% (p < 0.001), and 45% (p < 0.05), respectively. Plasma high-density lipoprotein cholesterol (HDL-C), phosphatidylcholine (PC), and PC/SM ratio were decreased by 42% (p < 0.05), 18% (p < 0.05), and 45% (p < 0.05), respectively. On day 30, the atherosclerotic lesions on the aortic arch of AdV-SMS2 treated mice were increased, and the lesion areas on the whole aorta and in the aortic root were significantly increased (p < 0.001). Furthermore, the collagen content in the aorta root was significantly decreased (p < 0.01).ConclusionsOur results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.
Project description:Background/Aim: Macrophage polarization and phenotypic switching of smooth muscle cells (SMCs) are multi-faceted events dominating atherosclerosis (AS) progression. TGF-β was proved to been one of the bridge on the crosstalk between macrophage and SMC. ShenLian (SL) was extracted from a potent anti-atherosclerotic formula. However, its exact mechanism rebalancing inflammatory microenvironment of AS remain largely unknown. Within the entirety of macrophage and SMC, this study investigated the pharmacological effects of SL on stabilizing atherosclerotic plaques. Methods: The main components of SL were examined by high performance liquid chromatography. Co-culture and conditioned medium models of macrophage/SMC interactions were designed to identify the relationship between macrophage polarization and switching of SMC phenotypes. Flow cytometry, immunofluorescent staining, RT-PCR, western blotting, and ELISA were used to determine the expression of molecules relating to AS progression. An atherosclerosis animal model, established by placing a perivascular collar on the right common carotid artery in ApoE-/- mice, was used to investigate whether TGF-β is the key molecular mediator of SL in crosstalk between macrophage and SMC. Plaque size was defined by nuclear magnetic resonance imaging. Key markers related to phenotypic transformation of macrophage and SMC were determined by immunohistochemical staining. Results: Results revealed that, accompanied by rebalanced M2 macrophage polarization, SL supported SMC phenotypic transformation and functionally reconstruct the ECM of plaques specifically in macrophage-SMC co-cultural model. Molecularly, such activity of SL closely related to the activation of STAT3/SOCS3 pathway. Furthermore, in co-culture system, up-regulation of α-SMA induced by SL could neutralized by 1D11, a TGF-β neutralizing antibody, indicating that SL mediated Macrophage-SMC communication by enhancing TGF-β. In the AS model constructed by ApoE-/- mice, effects of SL on phenotypic transformation of macrophage and SMC has been well verified. Specific blocking of TGF-β largely attenuated the aforementioned effects of SL. Conclusion: Our findings highlighted that TGF-β might be the responsive factor of SL within macrophage and SMC communication. This study revealed that crosstalk between macrophage and SMC forms a holistic entirety promoting atherosclerotic plaque stability.
Project description:Rupture of the collagenous, fibrous cap of an atherosclerotic plaque commonly causes thrombosis. Activated immune cells can secrete mediators that jeopardize the integrity of the fibrous cap. This study aimed to determine the relationship between T-cell-mediated inflammation and collagen turnover in a mouse model of experimental atherosclerosis. Both Apoe(-/-) x CD4dnTbetaRII mice with defective transforming growth factor-beta receptors in T cells (and hence released from tonic suppression of T-cell activation) and lesion size-matched Apoe(-/-) mice were used. Picrosirius red staining showed a lower content of thick mature collagen fibers in lesions of Apoe(-/-) x CD4dnTbetaRII mice, although both groups had similar levels of procollagen type I or III mRNA and total collagen content in lesions. Analysis of both gene expression and protein content showed a significant decrease of lysyl oxidase, the extracellular enzyme needed for collagen cross-linking, in aortas of Apoe(-/-)--CD4dnTbetaRII mice. T-cell-driven inflammation provoked a selective and limited increase in the expression of proteinases that catabolize the extracellular matrix. Atheromata of Apoe(-/-)--CD4dnTbetaRII mice had increased levels of matrix metalloproteinase-13 and cathepsin S mRNAs and of the active form of cathepsin S protein but no increase was detected in collagen fragmentation. Our results suggest that exaggerated T-cell-driven inflammation limits collagen maturation in the atherosclerotic plaque while having little effect on collagen degradation.
Project description:Experimental models of atherosclerosis suggest that recruitment of monocytes into plaques drives the progression of this chronic inflammatory condition. Cholesterol-lowering therapy leads to plaque stabilization or regression in human atherosclerosis, characterized by reduced macrophage content, but the mechanisms that underlie this reduction are incompletely understood. Mice lacking the gene Apoe (Apoe-/- mice) have high levels of cholesterol and spontaneously develop atherosclerotic lesions. Here, we treated Apoe-/- mice with apoE-encoding adenoviral vectors that induce plaque regression, and investigated whether macrophage removal from plaques during this regression resulted from quantitative alterations in the ability of monocytes to either enter or exit plaques. Within 2 days after apoE complementation, plasma cholesterol was normalized to wild-type levels, and HDL levels were increased 4-fold. Oil red O staining and quantitative mass spectroscopy revealed that esterified cholesterol content was markedly reduced. Plaque macrophage content decreased gradually and was 72% lower than baseline 4 weeks after apoE complementation. Importantly, this reduction in macrophages did not involve migratory egress from plaques or CCR7, a mediator of leukocyte emigration. Instead, marked suppression of monocyte recruitment coupled with a stable rate of apoptosis accounted for loss of plaque macrophages. These data suggest that therapies to inhibit monocyte recruitment to plaques may constitute a more viable strategy to reduce plaque macrophage burden than attempts to promote migratory egress.
Project description:Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE(-/-) mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice.
Project description:BackgroundInflammation plays an important role in all the stages of atherosclerotic plaque development. The current study aimed at assessing the altered expression of genes functioning in inflammation within the early stage (ES) and advanced stage (AS) atherosclerotic plaques obtained from patients undergoing coronary artery bypass grafting (CABG) surgery and identifying biomarker panel/s that may detect the status of plaque stages using peripheral blood samples.MethodsA section of ES and AS plaques and normal left internal mammary arteries (LIMA) were obtained from 8 patients undergoing the CABG surgery. Total RNA isolated was analyzed for mRNA and miRNA expression profile by Affymetrix arrays. A significant number of mRNAs was found to be differentially expressed in ES and AS plaque tissues relative to LIMA. The pathway analysis of differentially expressed mRNAs in the two plaque stages was also performed using DAVID Bioinformatics Database.ResultsThe mRNAs were found to be involved in critical inflammatory processes such as the toll-like receptor signaling pathway and cytokine-cytokine receptor interaction. Few miRNAs targeting these mRNAs were also altered in the two plaque conditions. QRT-PCR results showed a similar expression pattern of a few of the mRNAs and miRNAs in peripheral blood of the same patients relative to healthy controls.ConclusionChanges in mRNA and miRNA expression associated with various inflammatory processes occur in different atherosclerotic stage plaques as well as peripheral blood. Detection of such variations in patients' blood can be used as a possible prognostic tool to detect and/or predict the risk and stage of atherosclerosis.
Project description:The mechanisms responsible for macrovascular complications in diabetes remain to be fully understood. Recent studies have identified impaired vascular repair as a possible cause of plaque vulnerability in diabetes. This notion is supported by observations of a reduced content of fibrous proteins and smooth muscle cell mitogens in carotid endarterectomy from diabetic patients along with findings of decreased circulating levels of endothelial progenitor cells. In the present study we used a diabetic mouse model to characterize how hyperglycemia affects arterial repair responses. We induced atherosclerotic plaque formation in ApoE-deficient (ApoE-/-) and heterozygous glucokinase knockout ApoE-deficient mice (ApoE-/- GK+/-) mice with a shear stress-modifying cast. There were no differences in cholesterol or triglyceride levels between the ApoE-/- and ApoE-/- GK+/- mice. Hyperglycemia did not affect the size of the formed atherosclerotic plaques, and no effects were seen on activation of cell proliferation, smooth muscle cell content or on the expression and localization of collagen, elastin and several other extracellular matrix proteins. The present study demonstrates that hyperglycemia per se has no significant effects on tissue repair processes in injured mouse carotid arteries, suggesting that other mechanisms are involved in diabetic plaque vulnerability.
Project description:The unique physiochemical properties of nanomaterials have been widely used in drug delivery systems and diagnostic contrast agents. The safety issues of biomaterials with exceptional biocompatibility and hemo-compatibility have also received extensive attention at the nanoscale, especially in cardiovascular disease. Therefore, we conducted a study of the effects of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) on the development of aortic atherosclerotic plaques in ApoE-/- mice. The particle size of PLGA NPs was 92.69 ± 3.1 nm and the zeta potential were - 31.6 ± 2.8 mV, with good blood compatibility. ApoE-/- mice were continuously injected with PLGA NPs intravenously for 4 and 12 weeks. Examination of oil red O stained aortic sinuses confirmed that the accumulation of PLGA NPs caused a significantly higher extension of atherosclerotic plaques and increasing the expression of associated inflammatory factors, such as TNF-α and IL-6. The combined exposure of ox-LDL and PLGA NPs accelerated the conversion of macrophages to foam cells. Our results highlight further understanding the interaction between PLGA NPs and the atherosclerotic plaques, which we should consider in future nanomaterial design and pay more attention to the process of using nano-medicines on cardiovascular diseases.