Neurotensin regulates proliferation and stem cell function in the small intestine in a nutrient-dependent manner
Ontology highlight
ABSTRACT: Background & Aims: Intestinal stem cells (ISCs) are sensitive to dietary alterations and nutrient availability. Neurotensin (NT), a gut peptide localized predominantly to the small bowel and released by fat ingestion, stimulates the growth of intestinal mucosa under basal conditions and during periods of nutrient deprivation, suggesting a possible role for NT on ISC function. Methods: Lgr5-EGFP, NT wild type (Nt+/+) and Lgr5-EGFP, NT knockout (Nt-/-) mice were fed ad libitum (AL) or fasted for 48 h. Small intestine crypts were examined by RNAseq analysis. Results: Loss of NT impaired crypt cell proliferation and ISC function in a manner dependent on nutrient status. Under nutrient-rich conditions, NT stimulated the expression of genes that promote cell cycle progression, leading to crypt cell proliferation. Under conditions of nutrient depletion, NT stimulated WNT/β-catenin signaling and promoted an ISC gene signature, leading to enhanced ISC function. NT was required for the induction of WNT/β-catenin signaling and ISC-specific gene expression during nutrient depletion, and loss of NT reduced crypt cell proliferation and impaired ISC function and Lgr5 expression in the intestine during fasting. Conclusion: Collectively, our findings establish an evolutionarily conserved role for NT in ISC maintenance during nutritional stress.
Project description:The rapid regeneration of the small intestinal epithelium is sustained by crypt intestinal stem cells (ISCs). Wnt/b-catenin signaling is essential for intestinal crypt homeostasis and maintenance of Lgr5+ ISC, and yet no single or combinatorial knockout of Frizzled (FZD) genes, representing Wnt receptors, has phenocopied the severe intestinal epithelial effects of Wnt signaling blockade. The elusive identification of specific Frizzled (Fzd) receptor(s) underlying homeostatic proliferation and ISC function would greatly inform therapeutic mucosal repair strategies. In prior pharmacologic studies, bioengineered antagonists that block Wnt binding to both FZD5 and FZD8 receptors induced lethal crypt and villus loss, implicating FZD5 and/or FZD8 as essential for ISCs maintenance. Here, the potential function of Fzd5 in during intestinal homeostasis was examined by epithelial-specific Fzd5 ko, which rapidly elicited lethal pan-intestinal crypt and villus loss, and by Lgr5-specific Fzd5 cKO, which strongly reduced Lgr5+ ISC while inducing their premature differentiation. In parallel, Fzd5 cKO potently repressed Wnt target gene expression, with phenotypic rescue by constitutive activation of b-catenin in vivo and confirmation upon in vitro organoid culture. Fzd5 cKO but not Fzd8 cKO in organoids ablated responsiveness to dual specificity bioengineered FZD5/FZD8-selective Wnt surrogate agonists, which reversed DSS-induced colitis phenotypes in both wild-type and Fzd8 cKO mice. Overall, our results implicate the FZD5 receptor as an essential regulator of crypt homeostasis, Lgr5+ ISCs and intestinal response to bioengineered Wnt surrogate agonists.
Project description:The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. The mediators of such plasticity are still largely unknown. Using intestinal organoids and mouse models, we show that upon ribosome impairment (driven by Rptor deletion, amino acid starvation, or low dose cyclohexamide treatment) ISCs gain an Lgr5-negative, fetal-like identity. This is accompanied by a rewiring of metabolism. Our findings suggest that the ribosome can act as a sensor of nutrient availability, allowing ISCs to respond to the local nutrient environment. Mechanistically, we show that this phenotype requires the activation of ZAKɑ, which in turn activates YAP, via SRC. Together, our data reveals a central role for ribosome dynamics in intestinal stem cells, and identify the activation of ZAKɑ as a critical mediator of stem cell identity.
Project description:Background & Aims: Hierarchical organization of intestine relies on their stem cells by self-renew and producing committed progenitors. Although signals like Wnt are known to animate the continued renewal by maintaining intestinal stem cells (ISCs) activity, molecular mechanisms especially E3 ubiquitin ligases that modulate ISCs ‘stemness’ and supportive niche have not been well understood. Here, we investigated the role of Cullin 4B (Cul4b) in regulating ISC functions. Methods: We generated mice with intestinal epithelial-specific disruption of Cul4b (pVillin-cre; Cul4bfn/Y), inducible disruption of Cul4b (Lgr5-creERT2; Cul4bfn/Y, CAG-creERT2; Cul4bfn/Y) and their control (Cul4bfn/Y). Intestinal tissues were analyzed by histology, immunofluorescence, RNA sequencing and mass spectrum. Intestinal organoids deprived from mice with pVillin-Cre; Cul4bfn/Y, Lgr5-Cre; Cul4bfn/Y, Tg-Cul4b and their controls were used in assays to measure intestinal self-renewal, proliferation and differentiation. Wnt signaling and intestinal markers were analyzed by immunofluorescence and immunoblot assays. Differential proteins upon Cul4b ablation or Cul4b-interacting proteins were identified by mass spectrometry. Results: Cul4b specifically located at ISCs zone. Block of Cul4b impaired intestinal homeostasis maintenance by reduced self-renewal and proliferation. Transcriptome analysis revealed that Cul4b-null intestine lose ISC characterization and showed disturbed ISC niche. Mechanistically, reactivated Wnt pathway could recover intestinal dysfunction of Cul4b knockout mice. Analysis of differential total and ubiquitylated proteins uncovered the novel targeting substrate of Cullin-Ring ubiquitin ligase 4b (CRL4b), immunity-related GTPase family M member 1 (Irgm1) in intestine. Decreased Irgm1 rescued abnormally interferon signaling, overemphasized autophagy and downstream phosphate proteins in Cul4b knockout mice. Conclusion: We conclude that Cul4b is essential for ISC self-renewal and Paneth cell function by targeting Irgm1 and modulating Wnt signaling. Our results demonstrate that Cul4b is a novel ISC stemness and niche regulator.
Project description:The currently accepted intestinal epithelial cell organization model equates crypt base columnar (CBC) cells, marked by high levels of Lgr5 expression, with the intestinal stem cell (ISC). However, recent intestinal regeneration studies have uncovered limitations of the ‘Lgr5-CBC’ model, leading to two major views: one favoring the presence of a quiescent reserve stem cell population, the other calling for differentiated cell plasticity. To test if an alternative model may help reconcile these perspectives, we studied the hierarchical organization of crypt epithelial cells in an unbiased fashion, by combining high-resolution, single-cell profiling and lineage tracing in multiple transgenic mouse models. These show that Lgr5 is not a specific ISC marker; rather, cells located in the crypt isthmus, which include Lgr5low cells, comprise the ISCs that sustain tissue homeostasis. Following irradiation or intestinal injury, surviving ISCs and progenitors, but not differentiated cells, participate in intestinal regeneration, suggesting that neither de-differentiation nor reserve stem cell populations are drivers of intestinal regeneration. Our results provide a novel viewpoint for the intestinal crypt epithelium, in which ISCs localize to the crypt isthmus, and ISC potential is restricted to stem and progenitor cells.
Project description:Undifferentiated intestinal stem cells (ISCs), particularly those marked by Lgr5, are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs are necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in MTGR1 null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1 null were found nearly completely unable to survive and expand, likely due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that MTGR1’s role in intestinal differentiation is likely to be stem cell intrinsic and identify a novel role MTGR1 in maintaining ISC function.
Project description:Epithelial polarity is controlled by a polarity machinery including the Rho GTPase CDC42 and Scribble/PAR. By using intestinal stem cell (ISC)-specific deletion of CDC42 in Olfm4-IRES-eGFPCreERT2;CDC42flox/flox mice, we found that ISC-initiated CDC42 loss caused a drastic hyper-proliferation of transit amplifying (TA) cells and disrupted epithelial polarity. CDC42-null crypts displayed expanded TA cell and diminished ISC populations, accompanied by elevated hippo signaling via YAP/TAZ - Ereg and mTOR activation, independent from canonical Wnt signaling. YAP/TAZ conditional knockout restored the balance of ISC/TA cell populations and crypt proliferation but did not rescue the polarity in CDC42-null small intestine. mTOR or EGFR inhibitor treatment of CDC42 KO mice exhibited similar rescuing effects without affecting YAP/TAZ signaling. Inducible ablation of Scribble in intestinal epithelial cells mimics that of CDC42 KO defects including crypt hyperplasia and hippo signaling activation. Mammalian epithelial polarity regulates ISC and TA cell fate and proliferation via a hippo-Ereg-mTOR cascade.
Project description:Using EphB2 or the ISC marker Lgr5, we have FACS-purified and profiled intestinal stem cells (ISCs), crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal ISCs. A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. The intestinal stem cell signature predicts disease relapse in CRC and identifies a stem cell-like population that displays robust tumor- initiating capacity in immunodeficient mice as well as long-term self-renewal potential. We FACS purified mouse intestinal crypt cells according to their EphB2 or Lgr5 contents. We used Affymetrix chips to hybridize 2 samples from EphB2 high, 2 samples from EphB2 medium and 2 samples from EphB2 low cells (one sample from each group in a first hybridization on February 2009 plus an additional sample from each group on March 2009). Additionally, we hybridized one sample from Lgr5-EGFP high and one sample from Lgr5-EGFP low cells, obtained from Lgr5-EGFP knock-in mice (Barker et al., 2007).
Project description:To elucidate alterations in intestinal cell types under chronic stress, we conducted scRNA-seq analysis of intestinal crypts from NT and ES models. After that, we found that significant changes in ISCs in the ES group compared to the NT group. To validate the functional roles of ISCs, we performed RNA-seq of ISCs under different treatment conditions, we identified Chrm3-dependent differential genes between NT and ES groups, particularly noting downregulated genes associated with stemness and proliferation (e.g., Olfm4, Lgr5, and Mcm4), and upregulated genes linked to aging and calcium signaling pathways (e.g., Cdkn1a, Orai1, and Chp2), which contribute to ISC aging. These findings provided mechanistic insights into targeting these pathways to enhance intestinal function and integrity. Furthermore, to assess the impact of stress-induced changes in microbiota composition on ISC stemness, we synchronized microbiota between NT and ES groups through co-housing conditions and employed 16S rDNA sequencing. This analysis aimed to ascertain the possibility that changes in the microbiota composition whether contribute to the decline in ISC stemness under stress conditions. scRNA-seq of crypts were used to to characterize the diversity of cell lines under chronic stress. RNA-seq of ISC in Chrm3Lgr5+/+ and Chrm3Lgr5-/- mice from NT and ES mice were taken to delineate altered pathways and the mechanisms underlying ISC changes in ES model. 16S rDNA-seq (available in PRJNA1090629) were employed to confirm microbiota synchronization between NT and ES groups under co-housing conditions.
Project description:To elucidate alterations in intestinal cell types under chronic stress, we conducted scRNA-seq analysis of intestinal crypts from NT and ES models. After that, we found that significant changes in ISCs in the ES group compared to the NT group. To validate the functional roles of ISCs, we performed RNA-seq of ISCs under different treatment conditions, we identified Chrm3-dependent differential genes between NT and ES groups, particularly noting downregulated genes associated with stemness and proliferation (e.g., Olfm4, Lgr5, and Mcm4), and upregulated genes linked to aging and calcium signaling pathways (e.g., Cdkn1a, Orai1, and Chp2), which contribute to ISC aging. These findings provided mechanistic insights into targeting these pathways to enhance intestinal function and integrity. Furthermore, to assess the impact of stress-induced changes in microbiota composition on ISC stemness, we synchronized microbiota between NT and ES groups through co-housing conditions and employed 16S rDNA sequencing. This analysis aimed to ascertain the possibility that changes in the microbiota composition whether contribute to the decline in ISC stemness under stress conditions. scRNA-seq of crypts were used to to characterize the diversity of cell lines under chronic stress. RNA-seq of ISC in Chrm3Lgr5+/+ and Chrm3Lgr5-/- mice from NT and ES mice were taken to delineate altered pathways and the mechanisms underlying ISC changes in ES model. 16S rDNA-seq were employed to confirm microbiota synchronization between NT and ES groups under co-housing conditions.
Project description:Aging-related intestinal dysfunctions include loss of barrier integrity, altered stress responses, nutrient malabsorption, and cancer formation. Influence of aging on intestinal stem cell (ISC) and their niches can explain underlying causes for perturbation in ISC function during aging. However, molecular mechanisms for such decrease in functionality of ISCs during aging remain largely undetermined. Using different transcriptome-wide approaches including single-cell RNA-seq from intestinal crypt cells and immune cells of lamina propria, we characterized age-specific transcriptional programs in the intestinal epithelium. We found that aged ISCs strongly upregulate antigen presenting pathway genes and over-express secretory lineage marker genes leading to a compromised homeostasis of the intestinal epithelium. Mechanistically, increase of interferon gamma (IFNgamma) release by cytotoxic CD4 T cells and innate lymphoid type 2 cells (ILC2) in lamina propria of aged intestine lead to induction of Stat1 in ISCs that trigger MHC class II expression and prime them towards a secretory fate. Altogether these findings, clarify the cross talk between immune cells and ISC in aged intestine and identified the IFNgamma-Stat1-MHCII axis as the key gene network driving intestinal inflammaging phenotype and loss of tissue homeostasis. Our data provide basic and complementary knowledge for the development of therapeutic intervention for aging-related intestinal dysfunction and diseases.