Transcriptomics

Dataset Information

0

Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation [scRNA-seq]


ABSTRACT: Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. We performed dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide novel insights into the global regulatory landscape during hematopoiesis.

ORGANISM(S): Homo sapiens

PROVIDER: GSE183267 | GEO | 2021/09/30

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-09-30 | GSE182816 | GEO
2021-09-30 | GSE183268 | GEO
2021-09-30 | GSE183266 | GEO
2015-06-19 | GSE38914 | GEO
2019-02-07 | E-MTAB-6840 | biostudies-arrayexpress
2015-11-25 | GSE61844 | GEO
2015-11-25 | E-GEOD-61844 | biostudies-arrayexpress
2017-03-15 | GSE80614 | GEO
2020-04-10 | GSE124163 | GEO
2020-04-10 | GSE124164 | GEO